nbhkdz.com冰点文库

清华附中七年级2012年第一学期数学期末试题和答案

时间:2012-12-22


清华附中七年级第一学期期末数学试题 数
学校 班级


2012.1 姓名 成绩

一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格 .. 中相应的位置. 题号 答案 1. ?2 的绝对值等于 A. 2 B.
[来源:学*科*网]

1

2

3

4

5

6

7

8

9

10

1 2

C. ?

1 2

D. ?2

2. 神舟八号于 2011 年 11 月 1 日 5 时 58 分由改进型“长征二号”火箭顺利发射升空, 此次火箭 的起飞质量为 497000 公斤,数字 497000 用科学计 数法可以表示为 A. 497 ? 103 B. 0.497 ? 106 C. 4.97 ? 105 D. 49.7 ? 104

3.下列各式中结果为负数的是 A. ?( ?3) 4.下列计算正确的是 A. 3a ? 2a ? 5a 2 C.2a 3 ?3a 2 ? 5a 5 B.3a ? a ? 3 D. ?a 2b ? 2a 2b ? a 2b B. (?3)2 C. ? ?3 D. ?3

5.如图,已知点 O 在直线 AB 上, ?BOC ? 90? ,则 ?AOE 的余角是 A. ?COE B. ?BOC C. ?BOE D. ?AOE

C
E B

O

A

6.已知一个几何体从三 个不同方向看到的图形如图所示,则这个几何体是

[来源:学科网]

从正面看

从左面看

从上面看

A.圆柱

B.圆锥

C.球体

D.棱锥

7.若关于 x 的方程 ax ? 3x ? 2 的解是 x ? 1 ,则 a 的值是 A. ?1 B.5 C.1 D. ?5

8.如图,已知 O 是直线 AB 上一点,∠1=40 °,OD 平分∠BOC,则∠2 的度数是 A.20° C.30° B.25° D.70°
C

D 1 2
O

A

B

9.若有理数 m 在数轴上对应的点为 M,且满足 m ? 1 ? ? m ,则下列数轴表示正确的是
M m M
0

1

x

0

1

m

x

A
[来源:学#科#网][来源:学.科.网 Z.X.X.K]

B
M
x m 0

M
0 m 1

1

x

C

D

10.按下面的程序计算:
输入x 计算5 x ? 1的值
? 500



输出结果



若输入 x ? 100, 输出结果是 501,若输入 x ? 25, 输出结果是 631,若开始输入的 x 值为正 整数,最后输出的结果为 556,则开始输入的 x 值可能有 A.1 种 B.2 种 C.3 种 D.4 种

二、填空题(本题共 18 分,每小题 3 分) 11.若一个数的相反数是 2,则这个数是 12.角 ? ? 18?20? ,角 ? ? 6?30? ,则 ? ? ? ? 13.如图所示,线段 AB=4cm,BC=7cm,则 AC=
2

. . cm.

A

B

C

14.若 m ? 3 ? (n ? 2) ? 0 ,则 m ? 2 n 的值为_____________. 15.如果 a ? 3b ? 6 ,那么代数式 5 ? a ? 3b 的值是___________. 16.观察下面两行数 第一行:4,-9, 16,-25, 36,… 第二行:6,-7, 18,-23, 38,…

则第二行中的第 6 个数是

;第 n 个数是

.

三、解答题(本题共 24 分,第 19 题 8 分,其他题每题 4 分) 17.计算: (?1)10 ? 3 ? 8 ? (?4) .

[来源:学科网]

18.化简: 2 x ? 5 ? 3x ? 7 .

19.解方程: (1) 2 x ? 9 ? 5 x ? 3 ; (2)

5x ? 7 3x ? 1 . ?1 ? 6 4

20.先化简,再求值:已知 x2 ? (2x2 ? 4 y) ? 2( x2 ? y) ,其 中 x ? ?1 , y ?

1 . 2

[来源:Zxxk.Com]

21. 画一画: 如下图所示, 河流在两个村庄A、 B的附近可以近似地看成是两条折线段 (图中l) , A、B分别在河的两旁. 现要在河边修建一个水泵站,同时向A、B两村供水,为了节约建设的 费用,就要使所铺设的管道最 短. 某人甲提出了这样的建议:从B 向河道作垂线交l于 P,则 点P为水泵站的位置. (1)你是否同意甲的意见? (填“是”或“否”);

(2)若同意,请说明理由,若不同意,那么你认为水泵站应该 建在哪?请在图中作出来, 并说明作图的依据.

A

l
P

B

四、解答题(本题共 28 分,第 22 题 5 分,第 23 题 5 分,第 24 题 6 分,第 25 题 6 分, 第 26 题 6 分) 22.如图,已知∠BOC=2∠AOC,OD 平分∠AOB,且∠AOC=40°,求∠COD 的度数.

B

D
C

O

A

23.列方程解应用题 油桶制造 厂的某车间主要负责生产制造油桶用的的圆形铁片和长方形铁 片,该车间有工人 42 人,每个工人平均每小时可以生产圆形铁片 120 片或者长 方形铁片 80 片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套. 生 产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?

24.关于 x 的方程 (m ? 1) xn ? 3 ? 0 是一元一次方程. (1)则 m,n 应满足的条件为:m (2)若此方程的根为整数,求整数 m 的值. ,n ;

25.已知线段 AB 的长为 10cm,C 是直线 AB 上一动点,M 是线段 AC 的中点,N 是线段 BC 的 中点. (1)若点 C 恰好为线段 AB 上一点,则 MN= cm;

(2)猜想线段 MN 与线段 AB 长度的关系,即 MN=________AB,并说明理由.

26.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程 是:输入第一个整数 x1 ,只显示不运算,接着再输入整数 x 2 后则显示 x1 ? x2 的结果.比 如依次输入 1,2,则输出的结果是 1 ? 2 =1;此后每输入一个整数都是与前次显示的结果 进行求差后再取绝对值的运算. (1)若小明依次输入 3,4,5,则最后输出的结果是_______; (2)若小明将 1 到 2011 这 2011 个整数随意地一个一个的输入,全部输入完毕后显示的 最后结果设为 m,则 m 的最大值为_______ ; (3)若小明将 1 到 n(n≥3)这 n 个正整数随意地一个一个的输入,全部输入完毕后显示 的最后结果设为 m . 探究 m 的最小值和最大值.

数 学
参考答案及评分标准
2012.1 说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共 30 分,每小题 3 分) 题号 答案 1 A 2 C 3 C 4 D 5 A 6 B 7 B 8 D 9 A 10 B

二、填空题(本题共 18 分,每小题 3 分) 11.-2 16.-47; (?1) 12. 24?50?
n?1

13.11

14.-1

15.-1

[来源:Z.xx.k.Com]

(n ? 1) 2 ? 2

(注:此题第一个空 1 分,第二个空 2 分)

三、解答 题(本题共 24 分,第 19 题 8 分,其他题每题 4 分) 17.解:原式 ? 1 ? 3 - 8 ? 4 ………………………………2 分 ………………………………3 分 ………………………………4 分 ………………………………3 分 ………………………………4 分 ………………………………2 分 ………………………………3 分 ………………………………4 分

? 3- 2
? 1.
18.解:原式 ? (2 x ? 3x) ? (5 ? 7)

? 5x ? 2 .
19. (1)解:原方程可化为

2 x ? 5x ? 3 ? 9 .
? 3x ? 12 . x ? ?4 .
(2)解:两边同时乘以 12,得

2(5x ? 7) ? 12 ? 3(3x ? 1) .
10 x ? 14 ? 12 ? 9 x ? 3 . 10 x ? 9 x ? ?3 ? 14 ? 12 . x ? ?1 .
20.解:原式 ? x ? 2 x ? 4 y ? 2 x ? 2 y
2 2 2

………………………………1 分 ………………………………2 分 ………………………………3 分 ………………………………4 分 ………………………………1 分
[来源:学,科,网]

? ( x 2 ? 2 x 2 ? 2 x 2 ) ? (4 y ? 2 y )

? x2 ? 2y .
当 x ? ?1 , y ?

………………………………2 分

1 1 2 时,原式 ? (?1) ? 2 ? ………………………………3 分 2 2
? 1?1 ? 2.
………………………………4 分

21.解:(1)否; (2) 连结AB,交l于点Q,

………………………………1分

A

l
P

Q
B
………………………………2分 则水泵站应该建在点Q处; 依据为:两点之间,线段最短. ………………………………3分 ………………………………4分

注:第(2)小题可以不写作法,在图中画出点Q给1分,写出结论给1分,写出作图依据 给1分.

四、解答题(本题共 28 分,第 22 题 5 分,第 23 题 5 分,第 24 题 6 分 ,第 25 题 6 分, 第 26 题 6 分) 22.解:∵∠BOC=2∠AOC,∠AOC=40°, ∴∠BOC=2×40°=80°, ……………………………1 分

∴∠AOB=∠BOC +∠AOC= 80°+ 40°=120°,……………………………2 分 ∵OD 平分∠AOB, ∴∠AOD=

1 1 ?AOB ? ? 120 ? ? 60 ? , 2 2

……………………………4 分

∴∠COD =∠AOD -∠AOC= 60°- 40°=20°. ……………………………5 分

23.解:设生产圆形铁片的工人为 x 人,则生产长方形铁片的工人为 42- x 人, ………………………………1 分 可列方程 ………………………………2 分 解得: x=24. ………………………………3 分 则 42-x=18. ………………………………4 分 答:生产圆形铁片的有 24 人,生产长方形铁片的有 18 人. ………………5 分 24.解:(1) ? 1 , ? 1 ; …………………………2 分 ………………3 分

120x ? 2 ? 80(42 ? x) .

3 (2)由(1)可知方程为 (m ? 1) x ? 3 ? 0 ,则 x ? m ?1
∵此方程的 根为整数, ∴

3 为整数. m ?1
………………6 分

4 又 m 为整数,则 m ? 1 ? ?3,?1,1,3 ∴ m ? ?2,0,2,

注:最后一步写对一个的给 1 分,对两个或三个的给 2 分,全对的给 3 分. 25.解: (1)5; (2) ………………………………1 分 ………………………………2 分
[来源:学。科。网]

1 ; 2 1 AC , 2 1 ∵N 是线段 BC 的中点,∴ CN ? BC , 2

证明:∵M 是线段 AC 的中点,∴ CM ?

………………………………3 分

以下分三种情况讨论(图略) , 当 C 在线段 AB 上时,

MN ? CM ? CN ?

1 1 1 1 AC ? BC ? ( AC ? BC ) ? AB ; 2 2 2 2
………………………………4 分

当 C 在线段 AB 的延长线上时,

MN ? CM ? CN ?

1 1 1 1 AC ? BC ? ( AC ? BC ) ? AB ; 2 2 2 2
………………………………5 分

当 C 在线段 BA 的延长线上时,

MN ? CN ? CM ?

1 1 1 1 BC ? AC ? ( BC ? AC ) ? AB ; 2 2 2 2
………………………………6 分

综上: MN ?

1 AB . 2
………………………………1 分 ………………………………3 分

26. 解: (1)4; (2)2010;

(3) 对于任意两个正整数 x1 , x2 , x1 ? x2 一定不超过 x1 和 x2 中较大的一个,对于任意三 个正整数 x1 , x2 , x3, x1 ? x 2 - x 3 一定不超过 x1 , x2 和 x3中最大的一个,以此类推,

? 则 m 设小明输入的 n 个数的顺序为 x1,x2, xn, m ?||| ? | x1 ? x2 | ? x3 | ?? | ? xn | , 一 ? 中的最大数,所以 0 ? m ? n ,易知 m 与 1 ? 2 ? ? ? n 的奇偶性相 定不超过 x1,x2, xn,
同; 1,2,3 可以通过这种方式得到 0:||3-2|-1|=0; 任意四个连续的正整数可以通过这种方式得到 0:

||| a ? (a ? 1) | -(a ? 3) | -(a ? 2) |? 0 (*) ;
下面根据前面分析的奇偶性进行构造,其中 k 为 非负整数,连续四个正整数结合指的是 按(*)式结构计算. 当 n ? 4k 时,1 ? 2 ? ? ? n 为偶数,则 m 为偶数,连续四个正整数结合可得到 0,则最小 值为 0,前三个结合得到 0,接下来连续四个结合得到 0,仅剩下 n,则最大值为 n; 当 n ? 4k ? 1 时,1 ? 2 ? ? ? n 为奇数,则 m 为奇数,除 1 外,连 续四个正整数结合得到 0,则最小值为 1,从 1 开始连续四个正整数结合得到 0,仅剩下 n,则最大值为 n; 当 n ? 4k ? 2 时,1 ? 2 ? ? ? n 为奇数,则 m 为奇数,从 1 开始连续四个正整数结合得到 0,仅剩下 n 和 n-1,则最小值为 1,从 2 开始连续四个正整数结合得到 0,仅剩下 1 和 n,最大值为 n-1; 当 n ? 4k ? 3 时, 1 ? 2 ? ? ? n 为偶数,则 m 为偶数,前三个结合得到 0,接下来连续四 个正整数结合得到 0,则最小值为 0,从 3 开始连续四个正整数结合得到 0,仅剩下 1, 2 和 n,则最大值为 n-1. ………………………………6 分 注:最后一问写对一种的给 1 分,对两种或三种的给 2 分,全对的给 3 分.
[来源:学|科|网 Z|X|X|K]


赞助商链接

清华附中初一第一学期数学期中试卷及答案

清华附中初一第一学期数学期中试卷答案_初一数学_数学_初中教育_教育专区。初一第一学期期中试卷 数学 (清华附中初 15 级) 2015.11 一、选择题(本题共 30 ...

2012-2013学年清华附中七年级数学第二学期期末试卷_图文

2012-2013学年清华附中七年级数学第学期期末试卷_数学_初中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档2012-2013学年清华附中七年级数学第学期期末试卷_...

清华附中08年七年级第一学期期末试题(附答案)_图文

清华附中08年七年级第一学期期末试题(附答案) - 请以打印稿为准! 清华附中七年级第一学期期末测评 数 姓名 成绩 学 一、选择题: (共 36 分,每小题...

清华附中初一数学试题

清华附中初一数学试题_数学_初中教育_教育专区。初一数学试题答案清华附中初一数学统练一、选择题(每题 3 分,共 30 分) 1.下列代数式中单项式共有( ) 1 a...

2015学年清华附中七年级(上)期中数学试卷

学年北京市清华附中七年级(上)期中数学试 卷参考答案与试题解析 一、选择题(...信州区校级期末)下列式子:x ﹣1, +2, 整式的个数有( ) A.6 B.5 C.4...

2012-2013学年北京市海淀区清华附中初一第二学期期中考...

2012-2013学年北京市海淀区清华附中初一第学期期中考试数学试卷(含答案)_数学_初中教育_教育专区。北京初中数学周老师的博客:http://blog.sina.com.cn/beijing...

清华附中初一第二学期期末试卷及答案

清华附中初一第学期期末试卷答案_初一数学_数学_初中教育_教育专区。清华附中初一第学期期末试卷答案今日推荐 157份文档 2015国家公务员考试备战攻略 ...

北京市清华附中2015-2016学年七年级(上)期中数学试卷(...

西城区校级期末)在数轴上,已知在纸面上有一数轴 (...市清华附中七年级(上)期中数学试卷参考答案与试题...答案.第 6 页(共 20 页) 【解答】解:x2﹣1,...

2012-2013学年北京市清华附中八年级第二学期期末数学试卷

2012-2013学年北京市清华附中年级第学期期末数学试卷_数学_初中教育_教育专区。2012-2013 学年北京市清华附中年级(下)期末数学试卷一、选择题: (每题 3 ...

2014-2015学年度清华附中七年级下学期期中考试卷(含答案)

2014-2015学年度清华附中七年级学期期中考试卷(含答案)_数学_初中教育_教育专区。2015 年清华附中七年级学期期中考试卷 一、选择题 1. 下列各式中,正确的是...