nbhkdz.com冰点文库

新课标人教A版选修4-4第一讲极坐标系课时作业

时间:


选修 4-4 极坐标系课时作业

一、选择题 π 1.在极坐标系中,点 M(-2, )的位置,可按如下规则确定( 6 )

π A.作射线 OP,使∠xOP= ,再在射线 OP 上取点 M,使|OM|=2 6 B.作射线 OP,使∠xOP= 7π ,再在射线 OP 上取点 M,使|OM|=2 6 7π ,再在射线 OP 的反向延长线上取点 M,使|OM|=2 6

C.作射线 OP,使∠xOP=

π D.作射线 OP,使∠xOP=- ,再在射线 OP 上取点 M,使|OM|=2 6 解析:当 ρ<0 时,点 M(ρ,θ)的位置按下列规定确定:作射线 OP,使∠xOP=θ,在 OP 的反向延长线上取|OM|=|ρ|,则点 M 就是坐标(ρ,θ)的点. 答案:B π π π π 2.在极坐标平面内,点 M( ,200π),N(- ,201π),G(- ,-200π),H(2π+ ,200π) 3 3 3 3 中互相重合的两个点是( A.M 和 N C.M 和 H ) B.M 和 G D.N 和 H

解析:由极坐标定义可知,M、N 表示同一个点. 答案:A 3.若 ρ1+ρ2=0,θ1+θ2=π,则点 M1(ρ1,θ1)与点 M2(ρ2,θ2)的位置关系是( A.关于极轴所在直线对称 B.关于极点对称 C.关于过极点垂直于极轴的直线对称 D.两点重合 解析: 因为点(ρ, θ)关于极轴所在直线对称的点为(-ρ, π-θ). 由此可知点(ρ1, 1)和(ρ2, θ θ2)满足 ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称. 答案:A 4.已知极坐标平面内的点 P(2,- 别为( ) π B.(2,- ),(1,- 3) 3 5π ),则 P 关于极点的对称点的极坐标与直角坐标分 3 )

π A.(2, ),(1, 3) 3

C.(2,

2π ),(-1, 3) 3

D.(2,-

2π ),(-1,- 3) 3

5π 5π 解析:点 P(2,- )关于极点的对称点为(2,- +π), 3 3 2π 2π π 即(2,- ),且 x=2cos (- )=-2cos =-1, 3 3 3 -2π π y=2sin ( )=-2sin =- 3. 3 3 答案:D 二、填空题 5.限定 ρ>0,0≤θ<2π 时,若点 M 的极坐标与直角坐标相同,则点 M 的直角坐标为 ________. 解析:点 M 的极坐标为(ρ,θ),设其直角坐标为(x,y),依题意得 ρ=x,θ=y,即 x2 +y2=x2. ∴y=θ=0,ρ>0,∴M(ρ,0). 答案:(ρ,0) π 6.已知极坐标系中,极点为 O,0≤θ<2π,M(3, ),在直线 OM 上与点 M 的距离为 4 3 的点的极坐标为________. π 解析: 如图所示, |OM|=3, ∠xOM= , 在直线 OM 上取点 P、 使|OP| Q, 3 π 4π =7,|OQ|=1,∠xOP= ,∠xOQ= ,显然有|PM|=|OP|-|OM|=7-3=4, 3 3 |QM|=|OM|+|OQ|=3+1=4. π 4π 答案:(7, )或(1, ) 3 3 π π 7.直线 l 过点 A(3, ),B(3, ),则直线 l 与极轴夹角等于________. 3 6 解析:如图所示,先在图形中找到直线 l 与极轴夹角(要注意夹角是 个锐角),然后根据点 A,B 的位置分析夹角大小. 因为|AO|=|BO|=3, π π π ∠AOB= - = , 3 6 6 π 6 5π 所以∠OAB= = . 2 12 π- π 5π π 所以∠ACO=π- - = . 3 12 4 答案: π 4

4 π 8. 已知点 M 的极坐标为(5, 且 tan θ=- , <θ<π, θ), 则点 M 的直角坐标为________. 3 2 4 π 解析:∵tan θ=- , <θ<π, 3 2 3 4 ∴cos θ=- ,sin θ= . 5 5 ∴x=5cos θ=-3,y=5sin θ=4. ∴点 M 的直角坐标为(-3,4). 答案:(-3,4) 三、解答题 π 9.设点 A(1, ),直线 L 为过极点且垂直于极轴的直线,分别求出点 A 关于极轴,直 3 线 L,极点的对称点的极坐标(限定 ρ>0,-π<θ≤π) 解:如图所示:关于极轴的对称点为 π B(1,- ) 3 关于直线 L 的对称点为 C(1, 2π ). 3

2π 关于极点 O 的对称点为 D(1,- ). 3

ìx′=2x 10.已 知点 P 的直角坐标按 伸缩变换 í 变 换为点 P′(6,- 3),限定 ?y′= 3y
ρ>0,0≤θ≤2π 时,求点 P 的极坐标. 解:设点 P 的直角坐标为(x,y),

ì6=2x ìx=3, 由题意得í ,解得í ?-3= 3y ?y=- 3.
∴点 P 的直角坐标为(3,- 3). ρ= 32+(- 3)2=2 3,tan θ= - 3 , 3 11π . 6

∵0≤θ<2π,点 P 在第四象限,∴θ= ∴点 P 的极坐标为(2 3, 11π ). 6

π 11.(创新预测题)在极轴上求与点 A(4 2, )的距离为 5 的点 M 的坐标. 4 解:设 M(r,0), π 因为 A(4 2, ), 4

所以

(4 2)2+r2-8 2r·cos

π =5. 4

即 r2-8r+7=0.解得 r=1 或 r=7. 所以 M 点的坐标为(1,0)或(7,0).


赞助商链接

2017-2018学年高中数学选修4-4全册学案含解析人教A版99P

2017~2018 学人教 A 版高中数学 选修 4-4 全册学案解析版 目录 第一讲坐标系一平面直角坐标系 第一讲坐标系三简单曲线的极坐标方程 1 圆的极坐标方程 第一...

高二数学北师大版选修4-4《极坐标系的概念》教案

高二数学北师大版选修4-4极坐标系的概念》教案_数学_高中教育_教育专区。石泉中学课时教案科目:高二数学 单元(章节) 课题 本节课题 教师:张艳琴 第一章 坐标...

高中数学1.3.1圆的极坐标方程导学案新人教A版选修4-4(2)

高中数学1.3.1圆的极坐标方程导学案新人教A版选修4-4(2) - 选修 4-4 第一讲 坐标系 【问题探究】 问题1.请写出曲线 C 的极坐标方程定义。 1.3.1 ...

...《常用曲线的极坐标方程》(1)(人教A版数学选修4-4)

2015-2016学年黑龙江大庆十三中高二数学教案:《常用曲线的极坐标方程》(1)(人教A版数学选修4-4)_经管营销_专业资料。课题:常用曲线的极坐标方程(1) 教学目的: ...

选修4-4 1.1平面直角坐标系与极坐标系

黄骅新世纪中学数学导学案 选修 4-4 第一讲 坐标系 §1.1 平面直角坐标系与极坐标系课时安排:1 课时;编写人:李崇博;审核人:田清明;电子打版:吴珊; 编写...

高二数学选修4-4教案01极坐标系(1)

高中数学选修 4-4 教案 1 极坐标的概念教学目标:使学生理解极坐标系的概念;两点之间的距离。 教学重点:极坐标系、点的极坐标;应能熟练地根据坐标描点及求一个...

选修4-4坐标系测试题

? 5.在极坐标系中,与圆 ρ=4sin θ 相切的一条直线方程为 A.ρsin θ=...新课标测试题组选修4-4 ... 4页 免费 人教版选修4-4坐标系章节... ...

高中数学选修4-4知识点总结

③ 能在极坐标系中用极坐 选修4-4 数学知识点一、选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标...

高中数学选修4-4知识点总结

高中数学选修4-4知识点总结_数学_高中教育_教育专区。1. 极坐标与直角坐标的...cos? ? a . 4. 参数方程的概念: 在平面直角坐标系中, 如果曲线上任意一点...

选修4-4坐标系教案

坐标系、曲线的极坐标方程、平面坐标系中几种变换、...第一章【课标要求】 课标要求】 要求 坐标系 1....人教A版选修4-4坐标系... 暂无评价 2页 ...