nbhkdz.com冰点文库

新思路之函数的奇偶性

时间:


● H x l  磊 亚 S ¨{  数 新 路 - ¨ 妻 烹,学J 宥 - 朦 i 、 子l   lx   ) 思 , 暮 8j 卷 函数的奇偶性是函数的基 本性 质之 一 而函数性质是 函数知识的疆点内容 , 又是高  一 , 函数 中代数的主线 , 不沦是何种函数 , 都必须 与函数性 质牦 关联 , I 因此在复习中 , 针对不 同的  函数 类别 及 函数性 质的应 用 , 归纳 出 一定 的解题 思 路 是很 有 必 要的 . 文就 函数 的奇偶  本 性从定义 、 判断方法 、 简单性质及其应用等方面和同学们 一起复习常规的解题思路. 一   新思路之函数的奇偶性  0 江 苏泰 兴第三 高级 中学 吴 爱芳  解 析 式 . 样 的 函数 叫做 抽 象 函数 . 这   要 点 回 顾  1 .函数奇偶性 的定义 .   2 .奇函数或偶 函数 的图象特征.   化 简, 先化 简, ()z= 要 如 2(   厂) ;3 ) n (  :   =   思维点2 抽象 函数 的奇偶 性 的  判断方法 有哪些 ?为 什么 ?   答: 有定义法。 只 因为抽 象 函数  没有解析 式 , 以不能作 图. 所   3 .判定函数 的奇偶 性 的方法 ( 定  义法和 图象法 ) 及步骤 .   4 .奇 函数 或偶 函数 的简 单 性 质  及应用 .   思 维 点 3 解 析 式 化 到 最 简 之  后 , 怎样判定 ? 再   思维 点3 那 么 如 何 寻 找f x  () 答: 厂 ) 判断 (     ) 的关 系  . ) 的关 系  与  ) 的关 系?   答 :一 般 通 过 赋 值 法 可 找 出 )     思维点 4  ̄f - ) (x  不 明确 , 该怎样处 理 ? 应   与厂 ) 关 系. ( 的     精 例 展 示  精 例 1 判 断 下 列 函 数 的 奇 偶  答: 利用定义 的变形式 , () 看厂     _-) fx -( ) 厂- & ()   的值是 否为Q ( x f   思维 点5 除 用定 义法 判定 函数  思 维点4 抽象 函数 的奇偶 性 的  定 义 判 断 与具 体 函数 的 奇偶 性 的定  义判 断步骤是 否一致 ?   还   性( ) 1f . = 的奇偶性 外 , 有其 他方法 吗? . =) (   1 ( ̄ 2     /  ) 鲁 I3 (  o2  g( 了 +   答 : 本一致 , 基 不过 它没 有 解析  式 . 以 不 需 要 化 简. 所   答 : 以 用 图 象 法 判 定 .若 能 作  可 出函数 图 象 , 过观 察看 图 象是 否 关  通 于原 点 或 轴对 称 , 由此 可判 定 奇偶  性 , ( ) 分段 函数 , 如 4是 可作 出其 图瓤  答案 (  1 ) 非奇 非偶 函数 ; 是   答案 ②①  W f 3 ( ) 函  t ̄ 1若 )  k 2  = -" f 2 一) x (< 1 , +   俩 +)4 ){( ≤ ) 1 ( =0  1, ;    f+ 1 —2>)  f .   思维 点1 函数具 有奇偶 性 的必    要 条件是什 么?   答 : 数 具 有 奇 偶 性 的 必要 条 件  函 是 定 义 域 关 于 原 点 对 称 .如 ( ) 定  1的 (  ) 奇 函数 ;3厂  既是 奇 函数  2 是 ( )(

赞助商链接