nbhkdz.com冰点文库

《三角函数及解直角三角形》知识点总结

时间:2013-02-28


优学教育

《三角函数及解直角三角形》知识点总结

Ⅰ、本章知识结构框图:

1、正弦、余弦、正切、余切的概念
在是三角形 ABC 中, ?C ? 90? , (1)锐角A的对边与斜边的比叫做∠A的正弦,记作 sin A 。即 sin A ? ?A 的对边= a , 斜边 =c. (2)锐角A的邻边与斜边的比叫做∠A的余弦,记作 cos A 。即 cos A ? ?A 的邻边= b ,斜边= c (3)锐角A的对边与邻边的比叫做∠A的正切,记作 tan A 。即 tan A ? ?A 的对边= a ,邻边= b (4)锐角A的邻边与对边的比叫做∠A的余切,记作 cot A 。即 cot A ? ?A 的邻边= b ,对边= a 锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。 注意: (1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形 随便套用定义; (2)sin A 不是 sin 与 A 的乘积,是三角形函数记号,是一个整体。 sin A ”表 示一个比值, “ 其他三个三角函数记号也是一样的; (3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。 例 1、ABC 是直角三角形, ?C ? 90? ,AB=10,AC=6.求 sin

A, cos A, tan A, sin B, cos B, tan B 。

【解析】 在三角形 ABC 中, 因为 ?C ? 90? , 所以 ?A ? ?B ? 90? , 又因为 AB=10, AC=6, 所以 BC=8. 即: sin A ?
BC 8 4 AC 6 3 BC 8 4 ? ? , cos A ? ? ? , tan A ? ? ? ; AB 10 5 AB 10 5 AC 6 3 AC 6 3 BC 8 4 AC 6 3 sin B ? ? ? , cos B ? ? ? , tan B ? ? ? 。 AB 10 5 AB 10 5 BC 8 4

让爱与责任成就每一个孩子

优学教育

2、同角的三角函数之间的关系
(1)平方关系: sin 2 ? ? cos2 ? ? 1, ? 为锐角,即同一锐角的正弦和余弦的平方和等于1; (2)倒数关系: tan? ? cot? ? 1, ? 为锐角,即同一锐角的正切与余切的积为1,互为倒数;

(3)商的关系: tan ? ?

sin ? cos ? , cot ? ? cos ? sin ?

? 为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。
注意: (1)这些关系式都是恒等式,正反均可运用,同时还要注意它们的变形, (2) sin 2 ? 是 (sin? )2 的简写,读作“ sin ? ”的平方;不能将 sin 2 ? 写成 sin ? 2 ,前者是 ? 的 正弦值的平方,后者表示 ? 2 的正弦值。 例 2、求下列各式的值: (1) sin 、
2

45? ? cos2 45?

(2) 、若 sin ? 【解析】 (1)原式=

? 2, cos? ? 1 ,则求 tan ? , cot ? 的值。
sin ? 1 1 s ? 1 o c ? 2; cot ? ? ? 。 tc ? ? o ? ) ( cos ? tan ? 2 ns ? 2 i

sin 2 45? ? cos2 45? ? 1

(2) tan ? ?

3、特殊角的三角函数值
特殊角有 0?,30?,45?,60?,90? ,它们的三角函数值如下表:

?
三角 函数值

0?
0 1 0

30 ?

45 ?

60 ?

90 ?

sin ?

1 2

2 2

3 2
1 2

1 0 不存在

cos?

3 2 3 3

2 2

tan ?



3

让爱与责任成就每一个孩子

优学教育

cot ?
例 3、求下列各式的值: (1) 、

不存在

3



3 3

0

2 sin 60? ? 3 tan 30? ? tan 45? ;
2

(2) tan30? ? cot 60? ? cos 、

30? ? sin 2 45? tan45? 。

【解析】 、原式= (1)

2?

3 3 ? 3? ?1 ? 2 3 ?1 2 3

(2) 、原式=

3 3 3 2 2 7 ? ? ( )2 ? ( ) ?1 ? 3 3 2 2 12

4、互为余角的三角函数之间的关系 (诱导公式)
若 ?A ? ?B

? 90? ,则
任意锐角的正弦值等于它的余角的余弦值 任意锐角的余弦值等于它的余角的正弦值 任意锐角的正切值等于它的余角的余切值 任意锐角的余切值等于它的余角的正切值

sin A ? cos(90? ? A) ? cos B

cos A ? sin(90? ? A) ? sin B
tan A ? cot( ? ? A) ? cot B 90

cot A ? tan( ? ? A) ? tan B 90
例 4、在 Rt?ABC

中, ?C ? 90? ,且 sin A ?

1 。求 cos B 。 2
1 。 2

【解析】因为 ?A ? ?B

? 90? ,所以 cos B ? cos( 90? ? A) ? sin A ?

5、用计算器计算三角函数值
用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角是必须掌握的。

6、三角函数值的变换范围及规律
(1)当 0? ? ?

? 90 ? 时,
让爱与责任成就每一个孩子

优学教育

sin ? , tan?

? 的增大(或减小)而增大(或减小) , cos ? , cot ? 随着 ? 的增大(或减小)而减小(或增大) ;
随着

(2)当

0? ? ? ? 90 ? 时, 0 ? sin ? ? 1,0 ? cos? ? 1。

7、直角三角形的边角关系
(1)三边之间的关系: a
2

? b 2 ? c 2 (勾股定理) ;
? 90? ;
a b a b , cos A ? , tan A ? , cot A ? c c b a

(2)锐角之间的关系: ?A ? ?B (3)边角之间的关系: sin A ?

8、解直角三角形的概念及基本类型
(1)概念:在直角三角形中,用除直角外的已知元素,求出所有未知元素的过程,叫做解直角 三角形。 注意:在直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角。 (2)解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。 注意: 已知两锐角不能解直角三角形。

9、解直角三角形的方法 “有斜(斜边)用弦(正弦、余弦) ,无斜用切(正切、余切,宁乘毋除,取原避中)”这几句话 , 的意思是:当已知或求解中有斜边时,就用正弦或余弦,无斜边时,就用正切或余切;当所求的元素 既可用乘法又可用除法时,则用乘法,不用除法;既可以由已知数据又可由中间数据求解时,则用已 知数据,尽量避免用中间数据。

10、解非直角三角形的方法
对于非直角三角形,往往要通过作辅助线构造直角三角形来解。 作辅助线的一般思路是: 让爱与责任成就每一个孩子

优学教育 (1)作垂线构成直角三角形; (2)利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 例 5、在 ?ABC 中, ?A ? 60?, b ? 20cm, c ? 30cm. 求三角形的面积 S ?ABC 。 【 解 析 】 作 AB 上 的 高 CD 。 在 Rt?A C D , 中

CD ? AC ? sin A ? b ? sin A

。所以

S ?ABC ?

1 1 AB ? CD ? bc ? sin A 。当 ?A ? 60?, b ? 20cm, c ? 30cm. 时, 2 2

1 1 bc sin A ? ? 20? 30sin 60? 2 2 有 1 3 ? ? 20? 30? ? 150 3 (cm2 ) 2 2 S ?ABC ?
11、解直角三角形的实际应用的步骤
(1)审题 ①分析题意,理解实际问题的意义,看懂题目给出的示意图或自己画出的示意图,找出要解的直 角三角形; ②把实际问题中的数量关系,转移到直角三角形的各元素上,找出已知元素和未知元素; ③根据已知元素和未知元素之间的关系,选择合适的三角函数关系式。 (2)解题———— 注意精确度 (3)答——————注意答的完整及注明单位

本章数学思想:
数形结合思想:此部分内容经常用到数形结合思想,对于每一个题都可结合图形分析,会更清楚简捷。 数与形相结合,是问题清晰,思路简捷有条理,是几何知识中最常用的思想方法之一, 也是最应该坚持实施的方法。 从特殊到一般的归纳总结法:锐角三角函数中包含了特殊角的三角函数值,对于三角函数之间的关系 和转化,都可从特殊角开始。 转化思想:把直角三角形的线段比,转化为三角函数值或面积的比。 数学的建模思想:解直角三角形的实际应用,即将实际问题“数学化” ,构建直角三角形来解决问题。

让爱与责任成就每一个孩子

优学教育

让爱与责任成就每一个孩子


《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 初三精品资料 付国教案 《三角函数及解直角三角形》知识点总结 Ⅰ、本章知识结构框图: 1、正弦、余弦、正切、余切的...

《三角函数及解直角三角形》总结.doc

《三角函数及解直角三角形》总结 - 、 《三角函数及解直角三角形》知识点总结

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 《三角函数及解直角三角形》知识点总结 1、正弦、余弦、正切、余切的概念 在三角形ABC中,∠C=90°, (1)锐角A的对...

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 《三角函数及解直角三角形》知识点总结 1、正弦、余弦、正切、余切的概念 在是三角形ABC中,∠C=90°,(1) 锐角A的...

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 《三角函数及解直角三角形》知识点总结 Ⅰ、本章知识结构框图: 1、正弦、余弦、正切 在△ABC中,∠C=90°,(1) ...

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 《三角函数及解直角三角形》知识点总结 1、正弦、余弦、正切、余切的概念 在是三角形ABC中,∠C=90°, 在直角三角形...

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 《三角函数及解直角三角形》 Ⅰ、本章知

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 优学教育 《三角函数及解直角三角形》知识点总结 Ⅰ、本章知识结构框图: 1、正弦、余弦、正切、余切的概念 在是三角...

解三角形知识点.doc

解三角形知识点 - 《三角函数及解直角三角形》知识点总结 1、正弦、余弦、正切定

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 复习《三角函数及解直角三角形》 复习《

三角函数及解直角三角形知识点总结.doc

三角函数及解直角三角形知识点总结 - 初三精品资料 付国教案 《三角函数及解直角三角形》知识点总结 Ⅰ、本章知识结构框图: 1、正弦、余弦、正切、余切的概念 ...

《三角函数及解直角三角形》知识点总结.doc

《三角函数及解直角三角形》知识点总结 - 《三角函数及解直角三角形》知识点总结 Ⅰ、本章知识结构框图: Ⅱ、本章知识点: 1、正弦、余弦、正切、余切的概念 ...

《三角函数及解直角三角形》总结.doc

《三角函数及解直角三角形》总结 - 、 《三角函数及解直角三角形》知识点总结

解直角三角形的知识点总结.doc

表示为:∵∠C=90°∴∠A+∠B=90° 2、在直角三角形中,30°角所对的直角...解直角三角形知识点总结 3页 2下载券 《三角函数及解直角三角... 2页 1...

中考解直角三角形知识点整理复习_图文.doc

中考解直角三角形知识点整理复习_数学_初中教育_教育专区。解直角三角形 考点一...各锐角三角函数之间的关系 (1)互余关系:sinA=cos(90° A),cosA=sin(90...

初中三角函数知识点总结.doc

初中三角函数知识点总结 - 初三下学期锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边 a 、 b 的平方和等于斜边 c 的平方。 a 2 ? b 2 ? c 2 ...

人教版--解直角三角形知识点总结与例题.doc

人教版--解直角三角形知识点总结与例题 - 知识点总结: 一、锐角三角函数的定义

直角三角形知识点总结.doc

直角三角形知识点总结 - 直角三角形边角关系知识点考点总结 考点一、直角三角形的性质 1、直角三角形的两个锐角互余 可表示如下:∠C=90° ? ∠A+∠B=90°...

高中数学三角函数知识点总结(原创版)1.doc

高中数学三角函数知识点总结(原创版)1_数学_高中教育_教育专区。高考三角函数 1...为解直角三角形;若给出的三角 形是斜三角形,则称为解斜三角形 解斜三角形...

锐角三角形28.2解直角三角形知识点整理复习.doc

(hc 为 c 边上的高) 考点五、解直角三角形 应用 1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解 2、仰角、俯角、坡面 知识点及...