nbhkdz.com冰点文库

2015年北京市17区一模试题第28题汇编—几何综合

时间:2015-05-13


(2014 年北京市海淀区一模数学 28 题)
28.在菱形 ABCD 中, ?ADC ? 120? ,点 E 是对角线 AC 上一点,连接 DE , ?DEC ? 50? , 将线段 BC 绕点 B 逆时针旋转 50 ? 并延长得到射线 BF ,交 ED 的延长线于点 G . (1)依题意补全图形;
D D

A

E

C

A

E

C

B

B

备用图 (2)求证: EG ? BC ; (3)用等式表示线段 AE ,EG ,BG 之间的数量关系:_____________________________.

(2014 年北京市东城区一模数学 28 题)
28. 已知:Rt△ A′ BC′ 和 Rt△ ABC 重合,∠ A′ C′ B=∠ ACB=90°,∠ BA′ C′ =∠ BAC=30°,现将 Rt△ A′ BC′绕点 B 按逆时针方向旋转角 α(60°≤α≤90°) ,设旋转过程中射线 C′ C 和线段 AA′ 相交于点 D,连接 BD. (1)当 α=60°时,A’B 过点 C,如图 1 所示,判断 BD 和 A′ A 之间的位置关系,不必证明; (2)当 α=90°时,在图 2 中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证 明; (3)如图 3,对旋转角 α(60°<α<90°) ,猜想(1)中的结论是否仍然成立;若成立,请 证明你的结论;若不成立,请说明理由.

A

B C

图1

图2

图3

1/6

( 2014 年北京市西城区一模数学 28 题)
28,△ ABC 中,AB=AC.取 BC 边的中点 D,作 DE⊥AC 于点 E,取 DE 的中点 F,连接 BE, AF 交于点 H. (1)如图 1,如果 ?BAC ? 90? ,那么 ?AHB ? (2)如图 2,如果 ?BAC ? 60? ,猜想 ?AHB 的度数和 (3)如果 ?BAC ? ? ,那么

?,

AF ? BE



AF 的值,并证明你的结论; BE

AF ? BE

. (用含 ? 的表达式表示)

( 2014 年北京市朝阳区一模数学 28 题)
28.在△ABC中,∠C=90° ,AC=BC,点D在射线BC上(不与点B、C重合) ,连接AD,将AD 绕点D顺时针旋转90° 得到DE,连接BE. (1)如图 1,点 D 在 BC 边上. ①依题意补全图 1; ②作 DF⊥BC 交 AB 于点 F,若 AC=8,DF=3,求 BE 的长; (2)如图 2,点 D 在 BC 边的延长线上,用等式表示线段 AB、BD、BE 之间的数量关系 (直接写出结论).

图1

图2

2/6

( 2014 年北京市丰台区一模数学 28 题)
28.在△ABC 中,CA=CB,CD 为 AB 边的中线,点 P 是线段 AC 上任意一点(不与点 C 重合) , 过点 P 作 PE 交 CD 于点 E,使∠CPE= 交 AB 于点 G. (1)如果∠ACB=90°, ①如图 1,当点 P 与点 A 重合时,依题意补全图形,并指出与△CDG 全等的一个三 角形; ②如图 2,当点 P 不与点 A 重合时,求 (2)如果∠CAB=a,如图 3,请直接写出

1 ∠CAB,过点 C 作 CF⊥PE 交 PE 的延长线于点 F, 2

CF 的值; PE

CF 的值.(用含 a 的式子表示) PE

图1

图2

图3

( 2014 年北京市石景山区一模数学 28 题)
28.在△ ABC 中, ?BAC ? 90? . (1)如图 1,直线 l 是 BC 的垂直平分线,请在图 1 中画出点 A 关于直线 l 的对称点 A ' , 连接 A ' C , A' B , A ' C 与 AB 交于点 E ; (2)将图 1 中的直线 A' B 沿着 EC 方向平移,与直线 EC 交于点 D ,与直线 BC 交于 点 F ,过点 F 作直线 AB 的垂线,垂足为点 H . ①如图 2,若点 D 在线段 EC 上,请猜想线段 FH , DF , AC 之间的数量关系, 并证明; ②若点 D 在线段 EC 的延长线上,直接写出线段 FH , DF , AC 之间的数量关 系.
l A

A H
CB

A E

E

D F
图2

B

C B
备用图

C

图1

3/6

( 2014 年北京市通州区一模数学 28 题)
28.在菱形 ABCD 中,∠ ABC=60° ,E 是对角线 AC 上任意一点,F 是线段 BC 延长线上一 点,且 CF=AE,连接 BE、EF. (1)如图 1,当 E 是线段 AC 的中点时,易证 BE=EF. (2)如图 2,当点 E 不是线段 AC 的中点,其它条件不变时,请你判断(1)中的结论: _____. (填“成立”或“不成立” ) (3)如图 3,当点 E 是线段 AC 延长线上的任意一点,其它条件不变时, (1)中的结论 是否成立?若成立,请给予证明;若不成立,请说明理由.

图1

图2

图3

( 2014 年北京市怀柔区一模数学 28 题)
28.在等边△ABC 外侧作直线 AP ,点 B 关于直线 AP 的对称点为 D,连接 BD,CD,其中 CD 交直线 AP 于点 E. (1)依题意补全图 1; (2)若∠PAB=30°,求∠ACE 的度数; (3)如图 2,若 60°<∠PAB <120°,判断由线段 AB,CE,ED 可以构成一个含有多少度角 的三角形,并证明.
C

A

A

C

P

P

B

B

图1

图2

4/6

( 2014 年北京市平谷区一模数学 28 题)
28. (1)如图 1,在四边形 ABCD 中,AB=BC,∠ABC=80°,∠A+∠C=180° ,点 M 是 AD 边上一点,把射线 BM 绕点 B 顺时针旋转 40° ,与 CD 边交于点 N,请你补全图形,求 MN,AM,CN 的数量关系;
A M D

A

M

D

A

D

B

C

B

C

B

C

图1

图2

图3

(2)如图 2,在菱形 ABCD 中,点 M 是 AD 边上任意一点,把射线 BM 绕点 B 顺时针 旋

1 ?ABC ,与 CD 边交于点 N,连结 MN,请你补全图形并画出辅助线,直接写出 2

AM,CN,MN 的数量关系是 ; (3)如图 3,正方形 ABCD 的边长是 1,点 M,N 分别在 AD,CD 上,若△DMN 的周 长为 2,则△MBN 的面积最小值为 .

( 2014 年北京市门头沟区一模数学 28 题)
28.在 Rt△ABC 中,∠ACB=90°,D 是 AB 的中点,DE⊥BC 于 E,连接 CD. (1)如图 1,如果∠A=30°,那么 DE 与 CE 之间的数量关系是 .

(2)如图 2,在(1)的条件下,P 是线段 CB 上一点,连接 DP,将线段 DP 绕点 D 逆时 针旋转 60°,得到线段 DF,连接 BF,请猜想 DE、BF、BP 三者之间的数量关系,并 证明你的结论. (3)如图 3,如果∠A=α(0°<α<90°) ,P 是射线 CB 上一动点(不与 B、C 重合) , 连接 DP,将线段 DP 绕点 D 逆时针旋转 2α,得到线段 DF,连接 BF,请直接写出 DE、BF、BP 三者之间的数量关系(不需证明) .
A A A D D F D

C

E

B

C

E P

B

C

E

B

图1

图2

图3

5/6

( 2014 年北京市房山区一模数学 28 题)
28.如图 1,已知线段 BC=2,点 B 关于直线 AC 的对称点是点 D,点 E 为射线 CA 上一点, 且 ED=BD,连接 DE,BE. (1) 依题意补全图 1,并证明:△ BDE 为等边三角形; (2) 若∠ ACB=45°, 点 C 关于直线 BD 的对称点为点 F, 连接 FD、 FB.将△ CDE 绕点 D ① 如图 2,当 α=30°时,连接 BC ' .证明: EF = BC ' ; ② 如图 3,点 M 为 DC 中点,点 P 为线段 C E 上的任意一点,试探究:在此旋转过程中, 线段 PM 长度的取值范围?
E'
' '



时针旋转 α 度(0°<α<360°)得到△C ' DE ' ,点 E 的对应点为 E′ ,点 C 的对应点为点 C′ .

E'

A

D

A E F D
α

A E F C' B

P D M C

B

C

图1

B

C'

C

图2

图3

( 2014 年北京市延庆区一模数学 28 题)
28. 已知,点 P 是△ABC 边 AB 上一动点(不与 A,B 重合)分别过点 A,B 向直线 CP 作垂 线,垂足分别为 E,F,Q 为边 AB 的中点. (1)如图 1,当点 P 与点 Q 重合时,AE 与 BF 的位置关系是 ,QE 与 QF 的数量 关系是 ; (2)如图 2,当点 P 在线段 AB 上不与点 Q 重合时,试判断 QE 与 QF 的数量关系,并给予 证明; (3)如图 3,当点 P 在线段 BA 的延长线上时,此时(2)中的结论是否成立?请画出图形 并给予证明.

6/6


2015年北京市17区一模试题第28题汇编几何综合.doc

2015年北京市17区一模试题第28题汇编几何综合 - (2014 年北京市海

2015年北京市17区二模试题第28题汇编几何综合.doc

2015年北京市17区二模试题第28题汇编几何综合 - (2015 年北京市海

2015年北京17区县中考一模数学试题分类汇编第28题(几何....doc

2015年北京17区县中考一模数学试题分类汇编第28题(几何综合题) - 2015 年北京各区中考一模试题分类汇编第 28 题 ( 海淀 28) . 在菱形 A B C D 中, ?ADC...

2015年北京市17区一模试题第25题汇编圆综合.doc

2015年北京市17区一模试题第25题汇编综合 - (2014 年北京市海淀

2015年北京市17区一模试题17-22题汇编.doc

2015年北京市17区一模试题17-22题汇编 - (2014 年北京市海淀区一

2015北京初三一模几何综合(28题)汇编.doc

2015北京初三一模几何综合(28题)汇编 - ?ADC ? 120? , ?D

2015年北京市17区一模试题第26题汇编阅读理解.doc

2015年北京市17区一模试题第26题汇编阅读理解 - (2015 年北京市海

2015年北京市17区一模试题第27题汇编二次函数.doc

2015年北京市17区一模试题第27题汇编二次函数 - (2015 年北京市海

2015年北京市17区一模试题1-10题汇编选择题.doc

2015年北京市17区一模试题1-10题汇编选择题 - (2015 年北京市海

2013年北京市17区一模试题汇编12.代数综合.莹.doc

2013年北京市17区一模试题汇编12.代数综合.莹_中考_初中教育_教育专区。2013年北京市17区一模试题汇编全 2013 年北京市 17 区一模试题汇编 代数综合(13 昌平一模...

2013年北京市17区一模试题汇编14.代几综合.莹.doc

2013年北京市17区一模试题汇编14.代几综合.莹_中考_初中教育_教育专区。2013年北京市17区一模试题汇编全 2013 年北京市 17 区一模试题汇编 代几综合(13 昌平...

2015年北京市17区一模试题第23题汇编四边形.doc

2015年北京市17区一模试题第23题汇编四边形 - (2014 年北京市海淀

2015北京各区一模试题汇编解析几何.doc

2015北京区一模试题汇编解析几何 - 2015 北京各区县一模试题汇编创新题和压轴题(20 含答案解析) 目录 2015 北京各区县一模试题汇编创新题和压轴题...

2015年北京市17区一模试题第24题汇编统计.doc

2015年北京市17区一模试题第24题汇编统计 - (2014 年北京市海淀区

2015年北京市17区二模试题第29题汇编综合题.doc

2015年北京市17区二模试题第29题汇编综合题 - (2015 年北京市海淀

2015年北京市17区一模试题11-16题汇编填空题.doc

2015年北京市17区一模试题11-16题汇编填空题 - (2014 年北京市

2015年北京市17区一模试题第10题汇编.函数的图像.doc

2015年北京市17区一模试题第10题汇编.函数的图像 - (2015 年北京市

2015年北京市17区二模试题第27题汇编代几综合.doc

2015年北京市17区二模试题第27题汇编代几综合 - (2015 年北京市海

2014年北京市17区一模试题汇编13.几何综合.莹.doc

2014年北京市17区一模试题汇编13.几何综合.莹 - 2014 年北京市 17 套一模试题汇编 几何综合 (2014 昌平一模)24.如图 1,正方形 ABCD 与正方形 AEFG 的边 A...

2013年北京市17区一模试题汇编13.几何综合.莹.doc

2013年北京市17区一模试题汇编13.几何综合.莹 - 1 2013 年北京市 17 区一模试题汇编 几何综合 (13 昌平一模 24.在△ ABC 中, AB =4, BC =6,∠ ACB...