nbhkdz.com冰点文库

高中数学复习专题讲座(第5讲)不等式的综合应用

时间:2011-01-18


题目 高中数学复习专题讲座 不等式知识的综合应用 高考要求 不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其 他知识综合运用的特点比较突出 不等式的应用大致可分为两类 一类是建立不 等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均 值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、 定理和方法解决函数、方程、实际应用等方面的问题 重难点归纳 1 应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关 键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性 2 对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系, 抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建 立起数学模型,然后利用不等式的知识求出题中的问题 典型题例示范讲解 例 1 用一块钢锭烧铸一个厚度均匀,且表面积为 2 平方米的正四棱锥形有盖容 器(如右图)设容器高为 h 米,盖子边长为 a 米, (1)求 a 关于 h 的解析式; (2)设容器的容积为 V 立方米,则当 h 为何值时,V 最 大?求出 V 的最大值(求解本题时,不计容器厚度) 命题意图 本题主要考查建立函数关系式, 棱锥表面 积和体积的计算及用均值定论求函数的最值 知识依托 本题求得体积 V 的关系式后,应用均值定理可求得最值 错解分析 在求得 a 的函数关系式时易漏 h>0 技巧与方法 本题在求最值时应用均值定理 解 ①设 h′是正四棱锥的斜高,由题设可得
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新新 新新新 新新新 新新新 新新新 新新新 新新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 新新 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源源源源 源源源源 源源源源 源源源源 源源源源 源源源源 源源源源 源源源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源 源源 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新 王王 新新 王王 新新 王王 新新 王王 新新 王王 新新 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新新 新新新 新新新 新新新 新新新 新新新 新新新 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源 源源 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王
x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c x t 2 .6 m w @ 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t p w w k g o m /w c h /: j.x y .c t x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c @2 c o x t 1 .6 m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t p w .w k g o /m w c h /: jx y .c t x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源











新新 新新 新新 新新
源 源 源 源 源 源 源 源

























h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

t p w w k g o m /w c h /: j.x y .c t x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c @2 c o x t 1 .6 m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源









新新新 新新 新新
源 源 源 源 源 源 源 源 源 源





















h : w .w jx g o /m w c t /p k t .c y x /

t p w .w k g o /m w c h /: jx y .c t x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

1 ? 2 ?a + 4 ? 2 h′a = 2 ? ? ?h 2 + 1 a 2 = h′2 ? ? 4

消去 h ′.解得 : a =

1 h +1
2

( a > 0)

1 h ②由 V = a 2 h = (h>0) 2 3 3(h + 1)
得 V =

1 1 3(h + ) h

而h +

1 1 ≥ 2 h? = 2 h h

第1页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

所以 V≤

1 1 ,当且仅当 h= 即 h=1 时取等号 6 h 1 故当 h=1 米时,V 有最大值,V 的最大值为 立方米 6 2 例 2 已知 a,b,c 是实数,函数 f(x)=ax +bx+c,g(x)=ax+b,当-1≤x≤1 时|f(x)|
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王
源 源 源

≤1

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

(1)证明 |c|≤1; (2)证明 当-1 ≤x≤1 时,|g(x)|≤2; (3)设 a>0,有-1≤x≤1 时, g(x)的最大值为 2,求 f(x) 命题意图 本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综 合应用数学知识分析问题和解决问题的能力 知识依托 二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性 质灵活运用是本题的灵魂 错解分析 本题综合性较强,其解答的关键是对函数 f(x)的单调性的深刻理解, 以及对条件“-1≤x≤1 时|f(x)|≤1”的运用;绝对值不等式的性质使用不当,会使 解题过程空洞,缺乏严密,从而使题目陷于僵局 技巧与方法 本题(2)问有三种证法,证法一利用 g(x)的单调性;证法二利用绝 对值不等式 ||a|-|b||≤|a±b|≤|a|+|b|;而证法三则是整体处理 g(x)与 f(x)的关系 (1)证明 由条件当-1≤x≤1 时,|f(x)|≤1, 取 x=0 得 |c|=|f(0)|≤1,即|c|≤1 (2)证法一 依题设|f(0)|≤1 而 f(0)=c,所以|c|≤1 ①当 a>0 时,g(x)=ax+b 在[-1,1]上是增函数, 于是 g(-1)≤g(x)≤g(1),(-1≤x≤1) ∵|f(x)|≤1,(-1≤x≤1),|c|≤1, ∴g(1)=a+b=f(1)-c≤|f(1)|+|c|=2, g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2, 因此得|g(x)|≤2 (-1≤x≤1); ②当 a<0 时,g(x)=ax+b 在[-1,1]上是减函数, 于是 g(-1)≥g(x)≥g(1),(-1≤x≤1), ∵|f(x)|≤1 (-1≤x≤1),|c|≤1 ∴g(1)=|f(1)-c|≤|f(1)|+|c|≤2 g(-1)= -f(-1)+c≥-(|f(-1)|+|c|)≥-2 ∴ |g(x)|≤2
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

③当 a = 0 时, g ( x ) = b (常数)

∵ f (1) = a + b + c, f ( ?1) = a ? b + c

第2页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

且当 ?1 ≤ x ≤ 1 时, f ( x ) ≤ 1

? ?1 ≤ a + b + c ≤ 1 ∴? ? ?1 ≤ b ≤ 1 ,即 g ( x ) ≤ 2 . ? ?1 ≤ a ? b + c ≤ 1
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

综合以上结果,当-1≤x≤1 时,都有|g(x)|≤2 证法二 ∵|f(x)|≤1(-1≤x≤1) ∴|f(-1)|≤1,|f(1)|≤1,|f(0)|≤1, ∵f(x)=ax2+bx+c,∴|a-b+c|≤1,|a+b+c|≤1,|c|≤1, 因此,根据绝对值不等式性质得 |a-b|=|(a-b+c)-c|≤|a-b+c|+|c|≤2, |a+b|=|(a+b+c)-c|≤|a+b+c|+|c|≤2, ∵g(x)=ax+b,∴|g(±1)|=|±a+b|=|a±b|≤2, 函数 g(x)=ax+b 的图象是一条直线, 因此|g(x)|在[-1,1]上的最大值只能在区间的端点 x=-1 或 x=1 处取得,于是由 |g(±1)|≤2 得|g(x)|≤2,(-1<x<1 )
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

( x + 1) 2 ? ( x ? 1) 2 x +1 2 x ?1 2 ) ?( =( ) , 4 2 2 x +1 2 x ?1 2 x +1 x ?1 ) ?( ) ] + b( ) ∴ g ( x ) = ax + b = a[( ? 2 2 2 2 x +1 2 x +1 x ?1 2 x ?1 ) + b( ) + c ] ? [a( ) + b( = [a ( ) + c] 2 2 2 2 x +1 x ?1 = f( )? f( ) 2 2 证法三 :∵ x =

x +1 x ?1 ≤1,-1≤ ≤0, 2 2 x +1 x ?1 ∵|f(x)|≤1,(-1≤x≤1),∴|f ( ) |≤1,|f( )|≤1; 2 2 x +1 x ?1 ) |+|f( )|≤2 因此当-1≤x≤1 时,|g(x)|≤|f ( 2 2 (3)解 因为 a>0, g(x)在 [-1, 上是增函数, x=1 时取得最大值 2, g(1)=a+b=f(1) 1] 当 即 -f(0)=2 ① ∵-1≤f(0)=f(1)-2≤1-2=-1,∴c=f(0)=-1 因为当-1≤x≤1 时,f(x)≥-1,即 f(x)≥f(0), 根据二次函数的性质,直线 x=0 为 f(x)的图象的对称轴, b 由此得- =0 ,即 b=0 2a 由①得 a=2,所以 f(x)=2x2-1 例 3 设二次函数 f(x)=ax2+bx+c(a>0),方程 f(x)-x=0 的两个根 x1、x2 满足 0<
当-1≤x≤1 时,有 0≤
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

第3页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

x1<x2<

1 a (1)当 x∈[0,x1 ) 时,证明 x<f(x)<x1;
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 x 1 o 2 新 6 . 王ckt@ 王王
源 源 源

x1 2 解 (1)令 F(x)=f(x)-x, 因为 x1,x2 是方程 f(x)-x=0 的根, 所以 F(x)=a(x-x1)(x -x2) 当 x∈(0,x1)时,由于 x1<x2,得(x-x1)(x-x2)>0, 又 a>0,得 F(x)=a(x-x1)(x-x2)>0,即 x<f(x) x1-f(x)=x1-[x+F(x)]=x1-x+a(x1-x)(x-x2)=(x1-x)[1+a(x-x2)] 1 ∵0<x<x1<x2< ,∴x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0 a ∴x1-f(x)>0,由此得 f(x)<x1 b ,因为 x1、x2 是方程 f(x)-x=0 的两根,即 x1,x2 是方程 (2)依题意 x0=- 2a ax2+(b-1)x+c=0 的根 b ?1 ∴x1+x2=- a b a ( x1 + x2 ) ? 1 ax1 + ax2 ? 1 = = ∴x0=- ,因为 ax2<1, 2a 2a 2a ax x ∴ x 0< 1 = 1 2a 2 学生巩固练习 1 定义在 R 上的奇函数 f(x)为增函数,偶函数 g(x)在区间[0,+∞)的图象与 f(x)的图象重合,设 a>b>0,给出下列不等式,其中正确不等式的序号是( ) ①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b) ③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a) A ①③ B ②④ C ①④ D ②③ 4 2 下列四个命题中 ①a+b≥2 ab ②sin2x+ ≥4 ③设 x, 都是正数, y sin 2 x 1 9 若 + =1,则 x+y 的最小值是 12 ④若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其 x y 中所有真命题的序号是__________ 3 某公司租地建仓库,每月土地占用费 y1 与车库到车站的距离成反比,而每 月库存货物的运费 y2 与到车站的距离成正比,如果在距车站 10 公里处建仓库,这 两项费用 y1 和 y2 分别为 2 万元和 8 万元,那么要使这两项费用之和最小,仓库应建 在离车站__________公里处 4 已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程 f(x)=x 的两实数根为 x1,x2
(2)设函数 f(x)的图象关于直线 x=x0 对称,证明
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t p w w k g o m /w c h /: j.x y .c t x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c @2 c o x t 1 .6 m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t p w .w k g o /m w c h /: jx y .c t x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

x0<

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 新新源 源源新新 源 源源源源 源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

第4页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

(1)如果 x1<2<x2<4,设函数 f(x)的对称轴为 x=x0,求证 x0>-1; (2)如果|x1|<2,|x2-x1|=2,求 b 的取值范围 5 某种商品原来定价每件 p 元,每月将卖出 n 件,假若定价上涨 x 成(这里 x
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

成即

x ,0<x≤10 ) 10

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

每月卖出数量将减少 y 成,而售货金额变成原来的 z 倍

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

(1)设 y=ax,其中 a 是满足 的值;

1 ≤a<1 的常数,用 a 来表示当售货金额最大时的 x 3

2 x,求使售货金额比原来有所增加的 x 的取值范围 3 6 设函数 f(x)定义在 R 上,对任意 m、n 恒有 f(m+n)=f(m)·f(n),且当 x>0 时, 0<f(x)<1 (1)求证 f(0)=1,且当 x<0 时,f(x)>1; (2)求证 f(x)在 R 上单调递减; (3)设集合 A={ (x,y)|f(x2)·f(y2)>f(1)},集合 B={(x,y)|f(ax-y+2)=1,a∈R}, 若 A∩B= ? ,求 a 的取值范围
(2)若 y=
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

7

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

已知函数 f(x)=

2 x 2 + bx + c (b<0)的值域是[1,3] , x2 +1

(1)求 b、c 的值; (2)判断函数 F(x)=lgf(x),当 x∈[-1,1]时的单调性,并证明你的结论; (3)若 t∈R,求证
源 源 源 源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

lg

7 1 1 13 ≤F(|t- |-|t+ |)≤lg 5 6 6 5

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

参考答案 1 解析 由题意 f(a)=g(a)>0,f(b)=g(b)>0,且 f(a)>f(b),g(a)>g(b) ∴f(b)-f(-a)=f(b)+f(a)=g(a)+g(b) 而 g(a)-g(-b)=g(a)-g(b)∴g(a)+g(b)-[g(a)-g(b)] =2g(b)>0,∴f(b)-f(-a)>g(a)-g(-b) 同理可证 f(a)-f(-b)>g(b)-g(-a) 答案 A 2 解析 ①②③不满足均值不等式的使用条件“正、定、等” ④式 |x-y|=|(x-2)-(y-2)|≤|x-2|+|y-2|<ε+ε=2ε 答案 ④
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

3

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

解析







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

由已知 y1=

20 ;y2=0 8x(x 为仓库与车站距离) x
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

费用之和 y=y1+y2=0 8x+
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

20 20 ≥2 0.8 x ? =8 x x

第5页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

20 即 x=5 时“=”成立 x 答案 5 公里处 4 证明 (1)设 g(x)=f(x)-x=ax2+(b-1)x+1,且 a>0 ∵x1<2<x2<4,∴(x1-2)(x2-2)<0,即 x1x2<2(x1+x2)-4,
当且仅当 0 8x=
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

于是得x0 = ?

b 1 b ?1 1 1 1 1 = ? (? ? ) = ( x1 + x2 ) ? x1 x2 > ( x1 + x2 ) ? ( x1 + x2 ) + 2 2a 2 a a 2 2 2 ( 1 1 = ? ( x1 + x2 ) + 2 > ? (2 + 4) + 2 = ?1 2 2
源 源 源

2)解

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

由方程 g(x)=ax2+(b-1)x+1=0 可知 x1·x2=

1 >0,所以 x1,x2 同号? a


1°若 0<x1<2,则 x2-x1=2,∴x2=x1+2>2, ∴g(2)<0,即 4a+2b-1<0 又(x2-x1)2=

(b ? 1) 2 4 ? =4 a a2

∴2a+1= (b ? 1) 2 + 1 (∵a>0)代入①式得, 2 (b ? 1) 2 + 1 <3-2b ②

1 4 2°若 -2<x1<0,则 x2=-2+x1<-2 ∴g(-2)<0,即 4a-2b+3<0
解②得 b< 又 2a+1= (b ? 1) 2 + 1 ,代入③式得 2 (b ? 1) 2 + 1 <2b-1 解④得 b>





7 4

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

综上,当 0<x1<2 时,b<
源 源 源

1 7 ,当-2<x1<0 时,b> 4 4 5 解 (1)由题意知某商品定价上涨 x 成时,上涨后的定价、每月卖出数量、每月 x y 售货金额分别是 p(1+ )元、n(1- )元、npz 元, 10 10 x y 1 因而 npz = p (1 + ) ? n(1 ? ),∴ z = (10 + x)(10 ? y ) , 10 10 100
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

第6页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

1 5(1 ? a) 2 25(1 ? a) 2 {-a[x- ] +100+ } 100 a a 1 5(1 ? a) ≤10 由于 ≤a<1,则 0< 3 a 5(1 ? a) 要使售货金额最大,即使 z 值最大,此时 x= a 1 2 (2)由 z= (10+x)(10- x)>1,解得 0<x<5 100 3 6 (1)证明 令 m>0,n=0 得 f(m)=f(m)·f(0) ∵f(m)≠0,∴f(0)=1 取 m=m,n=-m,(m<0),得 f(0)=f(m)f(-m) 1 ,∵m<0,∴-m>0,∴0<f(-m)<1,∴f(m)>1 ∴f(m)= f ( ? m)
在 y=ax 的条件下,z=
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源











新新 新新 新新 新新
源 源 源 源 源 源 源 源

























h : w w j.x g o m /w c t /p k t .c y x /

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .





新新新 新新新
源 源 源 源 源 源 源 源 源 源









新新新 新新 新新
源 源 源 源 源 源 源 源 源 源





















h : w .w jx g o /m w c t /p k t .c y x /

t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

(2)证明







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

任取 x1,x2∈R,设 x1 < x2 ,则 f(x1)-f(x2)=f(x1)-f[(x2-x1)+x1]

=f(x1)-f(x2-x1)·f(x1)=f(x1)[1-f(x2-x1)] , ∵f(x1)>0,1-f(x2-x1)>0,∴f(x1)>f(x2), ∴函数 f(x)在 R 上为单调减函数
新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

(3)由 ?

? f ( x 2 + y 2 ) > f (1) ? x2 + y 2 < 1 得? , f (ax ? y + 2) = 1 = f (0) ?ax ? y + 2 = 0 ?
源 源 源

由题意此不等式组无解,数形结合得

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

|2| a +1
2





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

≥1,解得 a2≤3

∴a∈[- 3 , 3 ]

7

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王 新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

(1)解







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

设 y=

2 x 2 + bx + c ,则(y-2)x2-bx+y-c=0 x2 + 1



∵x∈R,∴①的判别式Δ≥0,即 b2-4(y-2)(y-c)≥0, 即 4y2-4(2+c)y+8c-b2≤0 ② 由条件知,不等式②的解集是[1,3] ∴1,3 是方程 4y2-4(2+c)y+8c-b2=0 的两根

?1 + 3 = 2 + c 2 x2 ? 2 x + 2 x ? ? ? 2 ∴c=2,b=-2,b=2(舍)∴ f ( x ) = = 2 ?1 ? 2 ? ? 8c ? b 2 x +1 ? x +1? ?1× 3 = ? 4
(2)任取 x1,x2∈[-1,1] ,且 x2>x1,则 x2-x1>0,且(x1-x2)(1-x1x2)>0,

第7页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

∴f(x2)-f(x1)=-

2 x2 2 x1 2( x1 ? x2 )(1 ? x1 x2 ) ? (? )= < 0, 2 2 1 + x2 1 + x1 (1 + x12 )(1 + x2 2 )
∴F(x)为减函数
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

∴f(x1)>f(x2),lgf(x1)>lgf(x2),即 F(x1)>F(x2)

1 1 1 1 1 | ? | t + |, | u |≤| (t ? ) ? (t + ) |= , 6 6 6 6 3 1 1 即- ≤u≤ ,根据 F(x)的单调性知 3 3 1 1 F( )≤F(u)≤F(- ), 3 3 7 1 1 13 ∴lg ≤F(|t- |-|t+ |)≤lg 对任意实数 t 成立 5 6 6 5 课前后备注 数学中的不等式关系 数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出, 数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素, 等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响 的;等与不等关系是中学数学中最基本的关系 等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数 学的奇异美 不等关系起源于实数的性质,产生了实数的大小关系,简单不等式, 不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学 式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异 如果赋予不等式 中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等 不等式是 永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题 解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不 同的解法;不等式证明则是推理性问题或探索性问题 推理性即在特定条件下,阐 述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大 多是与自然数 n 有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学 归纳法完成证明 另外,不等式的证明方法还有换元法、放缩法、反证法、构造法 等 数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联 系 不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此 不等式又可作为一个工具来解决数学中的其他问题, 诸如集合问题, 方程(组)的解的 讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解 析几何中的最大值、最小值问题无一不与不等式有着密切的联系 许多问题最终归 结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题 不 等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程 总之, 不等式的应用体现了一定的综合性,灵活多样性 (3)记u =| t ?
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w k t .c m /w /c h : .x y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 c m c t 2 6 o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w k t .c /m w /c h : x y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

第8页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关 系 数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系 是深刻而生动的体现 不等虽没有等的温柔,没有等的和谐,没有等的恰到好处, 没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让 人心旷神怡,魂牵梦绕呢?
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 . 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

第9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

共9页

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新


高中数学复习专题讲座不等式知识的综合应用.doc

高中数学复习专题讲座不等式知识的综合应用_数学_高中教育_教育专区。高中数学复习专题讲座不等式知识的综合应用,基本不等式公式四个,基本不等式中常用公式,高中重要的...

高中数学复习专题讲座(第20讲)不等式的综合应用.doc

高中数学复习专题讲座(第20讲)不等式的综合应用_数学_高中教育_教育专区。题目

二轮复习课堂讲义:第5讲 不等式及其应用.doc

二轮复习课堂讲义:第5讲 不等式及其应用 - 第 5 讲 不等式及其应用 (对应学生用书 (文 )、(理 )13~ 16 页 ) 1. 理解并掌握不等式的基本性质及解法. ...

...1轮高中数学(理)总复习第40讲《不等式的综合应用》....doc

2014版新课标第1轮高中数学()总复习第40讲《不等式的综合应用》同步测控及答案 - 第 40 讲 不等式的综合应用 [来源:www.shulihua.net] 5 3 1.已知 +=...

...2016届高三一轮数学复习第40讲不等式的综合应用(整....ppt

百强名校人教高中数学精品课件_2016届高三一轮数学复习第40讲不等式的综合应用(整理版) - 第40讲 不等式的综合应用 1.(改编)已知两个正数 a,b 的等差中项为...

2014届高三一轮数学(理)复习第40讲不等式的综合应用_图文.ppt

2014届高三一轮数学()复习第40讲不等式的综合应用 - 第40讲 不等式的综合应用 1.(改编)已知两个正数 a,b 的等差中项为 10,则 a,b 的等比中项的最大...

高考数学二轮复习 不等式综合应用专题教案.doc

高考数学二轮复习 不等式综合应用专题教案_高三数学_数学_高中教育_教育专区。江苏灌南高级中学学案---不等式综合应用 1、 2、 3.已知 x, y ? R ,且 x ? ...

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用....txt

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法 - ? 题目高考要求

...(理)第一轮总复习第6章 第42讲 不等式的综合应用.ppt

2013届新课标高中数学(理)第一轮总复习第6章 第42讲 不等式的综合应用 - 1 1.已知a>0,b>0,a,b的等差中项是 ,且m 2 1 1 5 ? a ? ,n ? b ?...

2014届高三数学一轮复习 第40讲 不等式的综合应用课件 ....ppt

2014届高三数学一轮复习 第40讲 不等式的综合应用课件 理 新人教版 - 第40讲 不等式的综合应用 1.(改编)已知两个正数 a,b 的等差中项为 10,则 a,b 的...

...(理)第一轮总复习第6章 第42讲 不等式的综合应用_图....ppt

2013届新课标高中数学(理)第一轮总复习第6章 第42讲 不等式的综合应用 - 1 1.已知a>0,b>0,a,b的等差中项是 ,且m 2 1 1 5 . ? a ? ,n ? b...

高中数学复习专题讲座(第8讲)奇偶性与单调性(2).txt

高中数学复习专题讲座(第8讲)奇偶性与单调性(2)_...并具有综合分析问题和解决问题的能力 (4)应用问题在...“f”号,转化为x的不等式,利用数形结合进行集合...

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用....doc

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法_数学_高中教育_教育...本题对思维能力要求很高,分类讨论、综合运用知识易发 生混乱 技巧与方法 合理...

2014版高考数学一轮总复习 第40讲 不等式的综合应用课....ppt

2014版高考数学一轮总复习 第40讲 不等式的综合应用课件 理 新人教A版 -

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用....doc

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法 高中数学,高考复习专题...以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f”的...

不等式的综合应用知识梳理.doc

不等式的综合应用知识梳理_数学_高中教育_教育专区。...不等式,运用图解法,可以使分类标准更加明晰.通过复习...4(2+c)y+8c+b2=0 的两根 ② 第5页 共7页...

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用....doc

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法_数学_高中教育_教育...本题对思维能力要求很高,分类讨论、综合运用知识易发 生混乱 技巧与方法 合理...

...二轮复习课件:第19讲 数列与函数、不等式综合应用及....ppt

2013高考数学二轮复习课件:第19讲 数列与函数、不等式综合应用及数列模型应用_数学_高中教育_教育专区。第19讲 数列与函数、不等式综合应用及数列模型应用 1.考题...

...(文)第一轮总复习第6章第41讲 不等式的综合应用_图....ppt

2013届新课标高中数学(文)第一轮总复习第6章第41讲 不等式的综合应用_高考_高中教育_教育专区。2013届新课标高中数学(文)第一轮总复习 ...

高考数学一轮总复习 第42讲 不等式的综合应用课件 文 ....ppt

高考数学一轮总复习 第42讲 不等式的综合应用课件 文 新课标 - 培养不等式在数列、函数、方程中的应用 及利用不等式解决实际问题的能力. 1.不等式与数学各知识...