nbhkdz.com冰点文库

曲边梯形的面积课件


一 教材分析
地位和作用:曲边梯形的面积”是(人教版)普通高 中课程标准实验教科书《数学》选修2-2第一章第五节的 内容,曲边梯形的面积中蕴涵的积分思想贯穿整个定积分 的始终,作为定积分的前奏曲,是定积分概念的引例和重 要铺垫材料,借助曲边梯形的面积这一直观具体的实例来 初步感受定积分的定义。使学生了解定积分的实际背景, 建立定积分概念的认知基础,为理解后续定积分概念

及几 何意义奠定基础。也是充分感受用极限的思想方法思考与 处理问题的好题材。

二 教学目标

(一)知识目标:1、初步了解、感受定积分的实际背景。
2、体会“以直代曲”,“逼近”的思想。
(二) 能力目标: 1、通过探索求曲边梯形的面积的过程,了解 用“分割、近似代替、求和、取极限”的方法、步骤分析问题, 从而培养学生的逻辑思维能力,理解用极限的思想方法思考与处 理问题,从而培养学生的创新意识。 2、体会“以直代曲”,“逼近”的思想。以 直代曲的过程中体会直与曲虽然是一对矛盾,但它们可以相互转 化,体现对立统一的辩证关系。

三教学重点、难点:
? 重点: 了解定积分的基本思想方法——以直代曲、逼近 的思想,通过化整为零,积零为整求曲边梯形的面积这一 过程,初步掌握求曲边梯形面积的步骤的“四步曲”,即 “分割、近似代替、求和、取极限”,领会其微积分思想 方法 ? 难点:“以直代曲”、“逼近”思想的形成过程。(由于 这种“以直代曲” 、“逼近”思想学生比较陌生 )

四教学方法和手段
A 在教学过程中我选用启发式、讨论探究式的教学方法, 运用多媒体的直观的功能,让学生在观察过程中通过类比、 分析、归纳等方法解决问题;在师生互动中启发学生,促 进学生积极思维、主动学习,激发学生的学习兴 趣. B 运用多媒体课件辅助课堂教学,通过创设情境,为 学生提供丰富、生动、直观的观察材料,激发学生学习 的积极性和主动性。

? 教学总思路:
根据从具体到抽象、从特殊到一般的原则,先研究一个特 殊的曲边梯形面积问题,通过类比圆的面积的求法得到解 决它的思想方法,并具体化为四个步骤----分割、近似代 替、求和、取极限、从而求出它的面积。最后再说明这个 方法可以推广到求一般曲边梯形的面积。求曲边梯形的面 积的过程蕴涵着定积分的基本思想方法,因此,在本小节 的教学中,应突出解决问题的思想方法和步骤,从而为引 入定积分的概念、体会定积分的基本思想、初步了解定积 分的概念奠定基础。

五、教学程序的设计
依据教学思路本节课在程序上分为问题提出—历史介绍—方 法讲解——链接生活—模拟训练—归纳总结—作业布置”等 七个阶段。 1、问题提出 以思考给出求一般曲边梯形的面积问题,建构问题情境, 然后根据从具体到抽象、从特殊到一般的原则,先研究 一个特殊的曲边梯形面积问题:如何计算y=x2在〔0,1〕 上的曲边梯形的面积呢?设计意图:心理学表明,思维 从疑问开始,问题的提出使学生的思维得以启动,同时 这个曲边梯形并不象正方形、长方形、圆、扇形等有现 成的公式可以利用,它没有现成的公式可用,问题本身 具有新鲜感和诱惑力,极大地引起了学生的兴趣,这样 引入符合教学论中的激发性原则。

? 2、历史介绍

介绍300年前,牛顿、卡瓦列利、瓦里士等著名学者对这 个问题的研究成果。同时介绍我国古代数学家刘徽早在三国时 代,就提出了著名的“割圆术”,以“直”代“曲”把圆的面 积近似看成多边形面积来计算,提出以直代曲,逼近思想。 给 学生介绍公元3世纪诞生的刘徽 “割圆术”:用圆内接正多边 形逼近圆周的方法。刘徽指出:“割之弥细,所失弥少。割之 又割,以至于不可割,则与圆周合体而无所失矣。” 这就是说, 圆内接正多边形的边数无限增加的时候,它的面积的极限是圆 面积。今天带着学生应用这种思想解决定积分的问题。从数学 史角度体会最早的“直曲转化”思想。

3方法讲解 引导学生从感性上理解,再逐步上升到理性上的 认识,这符合人们认识事物的一般规律,即先由感 性认识再逐步上升到理性认识;同时计算机的直观 形象的演示,也符合教学论中的直观性原则;极限 理论与计算机的结合运用,使学生清楚地看到曲边 梯形的面积由量变到质变的变化过程,这也符合事 物的发展变化由量变到质变的哲学原理。

引导学生观察、分析、归纳得出曲边梯形的定义。把由直线 x=a、x=b(a≠b)y=0和曲线y=f(x)所围成的图形称为曲边梯形 ? 求曲边梯形面积,这是一个一般而又 抽象的问题,学生从未遇过类似的问 题,因此,直接解决这个问题超出了 学生的认知水平,为了使学生建立解 决它的基本经验,引导学生先考虑一 个特殊的曲边梯形面积问题。 ? 如何求由抛物线y=x2与直线x=1,y=0 所围成的曲边梯形的面积?由刘徽 的“割圆术”中以“直”代“曲” 思想的启示,用正多边形逼近圆求圆 面积 ? “以直代曲,逼近”的思想启发学生 得到解决问题的思路:将求曲边梯形 面积的问题转化为求“直边图形”面 积的问题。接着提问怎样以“直”代 “曲”, ? (先让学生讨论,采用“以直代 曲”“逼近”的思想方法求曲边梯形
y f(b) f(a) y=f(x)

O

a

b

x

y

y=x 2 S
O
1

x

问题:具体怎样以直代曲? 引导学生思考能整体以“直” 代“曲”吗? 误差太大,为减小误差需要先将整个曲边梯 形分割,细分后再对小曲边梯形“以直代曲”。即在小范围 内“以直代曲”。 将上述 “以直代曲”和逼近的思想具体化为四个步骤;
第一步 分割(化整为零)教学中应引导学生体会:用“以 直代曲”的方法求曲边梯形的面积时,关键是减小误差.如 果将曲边梯形分割成若干个小曲边梯形,在每个局部小范围 内实施“以直代曲”,那么就能有效地减小误差,而且分割 得越细,误差就会越小 于是我们可以在区间[0,1]上等间隔地插入分点,把区间[0,1] 等分割成个小区间,分别过上述个分点作轴的垂线,这些垂 线把曲边梯形分成若干个小曲边梯形。

y

第二步 近似代替 (以不变高代 替变高,以矩形代替曲边梯形, 给出“零”的近似值) 分割后得到个小曲边梯形, 提问:对每个曲边梯形面积 如何以直代曲? 引导学生用恰 当的方式做近似代替; 学生可能会提出多种“以直 代曲”的方法,教学中应分析各 种方法的利弊,引导学生用矩形 近似代替小曲边梯形-——数学最 讲究简洁。

y=x 2

O

1

x

第三步 求和(积零为整,给出“整”的近似值) 将所有这些小矩形之和加起来,对所有这些近似值 求和,得到原曲边梯形面积的近似值.

第四步 取极限 使近似值向精确值转化,当小区间无 限细分到 无限小时,通过图象动画演示可以看到区间分的越 细,那么就越接近近似值,为此我们把让区间无限接近与零直 到不能再分为止,这就是一个极限的过程: (强调极限思想) 图象动画

1 n (n ?1)n(2n ?1) 1 2 ? i ?1 ? 1 S ? lim ? ? ? ? lim 3 ? ? i ?1? ? lim ? ? 3 n|?? n|?? n n|?? 6n 3 i ?1 ? n ? n i ?1
n

2

这就促成了上述近似向精确的转化;显然,分割越细, 近似程度越好.采用几何直观和列表计算相结合的方法,引 导学生观察近似值的变化趋势,教学中,引导学生想象近似 值随分割的不断细化而趋向于曲边梯形面积的过程,利用信 息技术向学生展示逼近过程,以增强学生的直观感知.

? 4、链接生活(运用所学的思想及方法来解决生活中的 问题) A
B
C D 图1 长江三峡溢流坝断面

举世瞩目的长江三峡溢流坝,其断面形状是根据流体 力学原理设计的,如图1所示,上端一段是是抛物线,中 间部分是直线,下面部分是圆弧。建造这样的大坝自然要 根据它的体积备料,计算它的体积就需要尽可能准确的计 算出它的断面面积。该断面最上面抛物线所围的那一块面 积该怎样计算呢?显然这是一曲边梯形的面积,所以根据 刚刚学习过的思想和方法我们来计算长江三峡溢流坝上部 断面面积。

假设上部分抛物线方程为 y ? 1 ? x 2 , x ? [0 , 1] 将 [0, 1] 等分成n等份,抛物线下面部分分割 1 成n个小曲边梯形第i个小曲边梯形用长为 n ?i ? 1 ? ? 的矩形代替, 高为 ? n ? ?
2

i2 1 ΔS ? (1 ? )? i n n2

n i2 1 1 n 2 S n ? ? (1 ? )? ? 1? ?i 2 3 n i?1 n n i?1 2n 2 ? 3n ? 1 2 ? 1? ? 2 3 6n

? 模拟训练 ? 求y=1/x2在〔0,1〕上曲边梯形面积作为练 习题目的设置,主要是为了强化本节课的 重点,通过学生自己亲自尝试、体验,才 能深刻理解“分割、近似代替、求和、取 极限”的微积分思想方法

? 归纳总结

(教师引导,学生总结)

1、求曲边梯形面积的思想方法:以直代曲,逐渐逼近 2、“四步曲”步骤:分割 近似代替 求和 取极限

?

教学反思

? 1揭示解决问题的思想方法: 以直代曲和逼近的思想。事实上,这就是定积分概念中蕴 涵的最本质的思想。 2强调解决问题的四个步骤: 将思想转化为具体的方法步骤,上述“以只代曲”和逼 近的思想具体化为可以具体操作的四个步骤;

板书设计
曲边梯形面积 1思想方法:以直代曲,逼近 2四步曲步骤:分割 近似代替 求和 取极限

实例应用


说课稿----曲边梯形的面积

说课稿---曲边梯形的面积_其它课程_高中教育_教育专区。(人教 A 版)高中数学...教师 利用多媒体课件演示。 探究解决途径: 在局部小范 围内“以直代曲” 。...

曲边梯形的面积(教案)

曲边梯形的面积(教案) 曲边梯形的面积(教案)杭州市源清中学 徐骋【教学目标 ...【教学准备 教学准备】 教学准备 多媒体电脑、课件等。 【教学过程 教学过程】...

梯形的面积教案

1.5.1《曲边梯形的面积》教... 3页 2财富值喜欢此文档的还喜欢 梯形的面积教案 5页 免费 梯形的面积 30页 免费 《梯形的面积》PPT课件之三... 22页 免费...

梯形的面积 入选教案

1.5.1《曲边梯形的面积》教... 3页 2财富值喜欢此文档的还喜欢 1.5.3定积分...教具、学具 教师准备:多媒体课件、 学生准备:直尺、剪刀、两个完全一样的梯形...

数值积分-1

高等数学课件:D9_7_方向导... 34页 1财富值 数值计算方法 数值积分1 75页...1 让曲边梯形沿 x 轴平移,其高度、宽度均不变,这表明曲边梯形面积与分点横...

wjf2

难点: 利用定积分计算数列部分和的极限 利用多媒体课件,形象地展示曲边梯形面积计算的思想方法,在理解曲 边梯形面积计算的基础上,经过数学抽象进而理解定积分:分割...

第5章 数理统计的基本概念

概率论课件概率论课件隐藏>> 第五章 数理统计的基本概念 本章主要讲述样本,总体...( x ∈ (t j ?1 , t j ] ) 为曲边的曲边梯形的面积,而且若 m ...

矩形第章逻辑起点

如: 1)问题的提出——求曲边梯形的面积可以用矩形面积近似取代曲边梯形面积. ...课件出示图形如下。 师:从前面的变形中,我们感觉到长方形的面积应该比平行四边...

正态分布教案

教师通过课件动态演 示频率分布直方图无限 分割的过程。 通过几何画板让学生 直观...上的阴影 部分 即 对于任意一个随机变量 X ,如何求出 曲边梯形的面积,曲边...

2.4 二项分布(1)

搜 试试 帮助 全部 DOC PPT TXT PDF XLS 百度文库 上传文档...- 30 - 回顾曲边梯形的面积 S = ∫ b a f ( x)dx 的意义. : 2.从...