nbhkdz.com冰点文库

用高中数列知识银行按揭代款等额本息还款方式公式推导

时间:2013-11-05


等额本息款和等额本金还款计算公式的推导 现在用高中数学推导出前一种,等额本金公式比较简单,不再推导 月还款额=当月本金还款+当月利息 其中本金还款是真正偿还贷款的。每月还款之后,贷款的剩余本金就相应减少: 当月剩余本金=上月剩余本金—当月本金还款 直到最后一个月,全部本金偿还完毕。 利息还款是用来偿还剩余本金在本月所产生的利息的每月还款中必须将本月本金所产 生的利息付清: 当月利

息=上月剩余本金×月利率 其中月利率=年利率÷12 由上面利息偿还公式中可见,月利息是与上月剩余本金成正比的,由于在贷款初期,剩 余本金较多,所以可见,贷款初期每月的利息较多,月还款额中偿还利息的份额较重。随着 还款次数的增多,剩余本金将逐渐减少,月还款的利息也相应减少,直到最后一个月,本金 全部还清,利息付最后一次,下个月将既无本金又无利息,至此,全部贷款偿还完毕。 下面我们就基于这个公式推导一下这种还款方式的具体计算公式。 等额本息还款方式 等额本金还款,就是每个月的还款额是固定的。由于还款利息是逐月减少的,因此反过 来说,每月还款中的本金还款额是逐月增加的。 首先,我们先进行一番设定: 设:总贷款额=A 还款次数=B 还款月利率=C 月还款额=X 当月本金还款=Yn(n=还款月数) 先说第一个月,当月本金为全部贷款额=A,因此: 第一个月的利息=AC 第一个月的本金还款额 Y1=X-第一个月的利息 =X-AC 第一个月剩余本金一总贷款额―第一个月本金还款额 =A-(X-AC) =A(1+C)―X 再说第二个月,当月利息还款额=上月剩余本金×月利率 第二个月的利息=[A(1+C)-X]C 第二个月的本金还款额 Y2=X-第二个月的利息 =X―[A(1+C)-X]C 第二个月剩余本金=第一个月剩余木金―第二个月本金还款额 =A(1+C)―X―{X―[A(1+C)-X]C} =A(1+C)―X―X+[A(1+C)-X]C =A(1+C) (1+C)―[X+(1+C)X」 2 =A(1+C) ―[X+(1+C)X]

1

(1+C)2 表示(1+C)的 2 次方 第三个月, 第三个月的利息=第二个月剩余本金×月利率 第三个月的利息={A(1+C)2―[X+(1+C)X]}C 第三个月的本金还款额 Y3=X―第三个月的利息 =X―{A(1+C)2―[X+(1+C)X]}C 第三个月剩余本金=第二个月剩余本金―第三个月的本金还款额 =A(1+C)2―[X+(1+C)X]―X+{A(1+C)2―[X+(1+C)X]}C =A(1+C)2―[X+(1+C)X]+AC(1+C)2―[XC+XC(1+C)]―X =A(1+C)2―[X+(1+C)X]+AC(1+C)2―[X(1+C)+XC(1+C)] =A(1+C)3―[X+(1+C)X+X(1+C)+XC(1+C)] =A(1+C)3―[X+(1+C)X+(1+C)2X] =A(1+C)3―X[1+(1+C)+(1+C)2] 上式可以分成两个部分 第一部分:A(1+C)3 第二部分:X[1+(1+C)+(1+C)2]=X[1(1+C)0+(1+C)1+(1+C)2] 通过对前三个月的剩余本金公式进行总结,我们可以看到其中的规律: 剩余本金中的第一部分=总贷款额×(1 十月利率)的 n 次方, (其中 n=还款月数) 剩余本金中的第二部分是一个等比数列,以(1+月利率)为比例系数,月还款额为常 数系数,项数为还款月数 n。 推广到任意月份: 第 n 月的剩余本金=A(1+C)n―XSn(Sn 为(1+C)的等比数列的前 n 项和) 根据等比数列的前 n 项和公式: Sn=a1q0+a1q1+a1q2+a1q3+..+a1qn-1= . 可以得出 XSn=

a1 (1 ? q n ) (1 ? q)

X [1 ? (1 ? C ) n ] (1 ? 1 ? C )



X [(1 ? C ) n ? 1] C X [(1 ? C ) n ? 1] C

所以,第 n 月的剩余本金=A(1+C)n―

由于最后一个月本金将全部还完,所以当 n 等于还款次数时,剩余本金为零。 设 n=B〔还款次数)

X [(1 ? C ) B ? 1] 剩余本金=A(1+C) - =0 C
B

从而得出 月还款额

2

X=

AC(1+C) B (1+C) B ? 1
还款次数

=总贷款额×月利率×(1+月利率) 将 X 值带回到第 n 月的剩余本金公式中 第 n 月的剩余本金= A

÷[(1+月利率)

还款次数

-1]

(1+C) B ? (1 ? C ) n (1+C) B ? 1

第 n 月的利息=第 n-1 月的利余本金×月利率 = AC

(1+C) B ? (1 ? C ) n ?1 } (1+C) B ? 1

第 n 月应还本金数=X-第 n 月的利息 = AC

(1 ? C ) n ?1 (1 ? C ) B ? 1

总还款额=X×B

(1 ? C ) B = ABC (1 ? C ) B ? 1
总利息=总还款额-总贷款额=X×B-A =A

(1 ? C ) B ( BC ? 1) ? 1 (1 ? C ) B ? 1

等额本息款,每个月的还款额是固定的。由于还款初期利息较大,因此初期的本金还款 额很小。相对于等额本金方式,还款的总利息要多。

3


小王计划采用等额本息分期付款的方式购买一台,售价为40...

简答题 数学 等比数列的通项公式 小王计划采用等额本息分期付款的方式购买一台,售价为4000元的笔记本电脑,年利率为5.76%,三年还清贷款,问每月需要付多少贷款? ...