nbhkdz.com冰点文库

高二2016年第一学期期中考试文科数学试题(含答案)

时间:


2016—2017 学年度第一学期期中考试 高二年级数学试卷(文科)
一、选择题: (本大题共 12 小题,每小题 5 分,满分 60 分)
1.某工厂有 A、B、C 三种不同型号的产品,这三种产品数量之比为 2∶3∶5,现用分层抽样 从中抽出一个容量为 n 的样本,该样本中 A 种型号产品有 8 件,那么这次样本的容量 n 是 A. 40 B. 20 C. 16 D. 12 2.一组数据的平均数是 2.8,方差是 3.6,若将这组数据中的每一个数据都加上 60,得到一 组新数据,则所得新数据的平均数和方差分别是 A. 57.2,3.6 B. 57.2,56.4 C. 62.8,3.6 D. 62.8,63.6 3.已知点 M(1,0),直线 l : x ? ?1 ,点 B 是 l 上的动点,过点 B 垂直于 y 轴的直线与线段 BM 的垂直平分线交于点 P,则点 P 的轨迹是 A. 直线 B. 椭圆 C. 双曲线的一支 4.下列命题中真命题的个数是 ① ?x ? R, x 4 ? x 2 ; ②若“ p ? q ”是假命题,则 p , q 都是假命题;
3 2 ③命题“ ?x ? R, x ? x ? 1 ? 0 ”的否定是“ ?x0 ? R, x0 ? x0 ?1 ? 0 ”
3 2

D. 抛物线

A.

3

B. 2

C.

1

D. 0

5.执行如图所示的程序框图,若输出的 S ? 88 ,则判断框内应填入的条件 是 A. k ? 4 ? B. k ? 5 ? C. k ? 6 ? D. k ? 7 ? 6.点 A 为周长等于 3 的圆周上的一个定点,若在该圆周上随机取一点 B,则 劣弧 AB 的长度小于 1 的概率为 A.

1 3

B.

2 3

C.

3 4

D.

? 4
x
y
2 6
?

7.已知 x 、 y 的取值如下表所示:

3 4

4 5

如果 y 与 x 呈线性相关,且线性回归方程为 y ? bx ? A.

13 ,则 b = 2

1 1 1 - B. C. D. 1 2 3 2 8.若 p 、 q 是两个命题,则 “ p ∨ q 为真命题”是“ ? p ∧ ? q 为假命题”的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件

9.中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为
高二数学期中试卷文科第 1 页 共 7 页

A.

5 2

B.

6 2

C.

5

D.

6

10.函数 f ( x) ? ( x ? 3)e x 的单调递增区间是 A. (??,2) 11.曲线 y ? A. ? B. (0,3) C. (1,4) D. (2,??)

sin x 1 ? ? 在点 M ( ,0) 处的切线的斜率为 sin x ? cos x 2 4
B. ?

2 2

1 2

C.

1 2

D.

2 2

12. 函数 f ( x) 是定义在 (0,??) 上的非负可导函数 , 且满足 xf ?( x) ? f ( x) ? 0 , 对任意正数

a, b , 若 a ? b ,则必有
A. bf (a) ? af (b) B. bf (a) ? af (b) C. bf (a) ? af (b) D. af (b) ? bf (a)

二、填空题: (本大共 4 小题,每小题 5 分,满分 20 分)
13.一位同学种了甲、乙两种树苗各 1 株,分别观察 了 9 次、10 次后,得到树苗高度的数据的茎叶图如图 (单位:厘米),则甲、乙两种树苗高度的数据的中位 数之和是________. 14.在某次数学知识竞赛中,将来自不同学校的学生的成绩 绘制成如图所示的频率分布直方图.已知成绩在[60,70)的 学生有 40 人,则成绩在[60,80)的有________ 人.

15.设椭圆

x2 y2 ? ? 1(a ? b ? 0) 上一点 A 关于原点的对 a2 b2

称点为 B,F 为其右焦点,若 AF⊥BF,且∠ABF= 圆的离心率为________ 16.已知双曲线

? ,则椭 4

x2 y2 ? ? 1(a ? 0, b ? 0) 的右焦点为 F ,若过点 F 且倾斜角为 30°的直线 a 2 b2

与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是
高二数学期中试卷文科第 2 页 共 7 页

三、解答题: (本大题共 6 小题,满分 70 分,解答须写出文字说明、证明过程 或演算步骤) 1 17.(10 分)已知 c ? 0 ,设命题 p :函数 y ? c x 为减函数.命题 q :当 x ? [ ,2] 时,函 2 1 1 数 f ( x) ? x ? ? 恒成立.如果 p 或 q 为真命题, p 且 q 为假命题,求 c 的取值范围. x c

18.(12 分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相 关报道提供的全网传播 2015 年某全国性大型活动的“省级卫视新闻台”融合指数的数据, 对名列前 20 名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示. 组 1 2 3 4 号 分 组 频 2 8 7 3 数

[4,5) [5, 6)

[6, 7)
[7,8]

(Ⅰ)现从融合指数在 [4,5) 和 ? 7,8? 内的“省级卫视新闻台”中随机抽取 2 家进行调研, 求至少有 1 家的融合指数在 ? 7,8? 的概率; (Ⅱ)根据分组统计表求这 20 家“省级卫视新闻台”的融合指数的平均数.

19.(12 分)已知抛物线 C: y ? 2 px( p ? 0) 过点 A(1,-2).
2

(1)求抛物线 C 的方程,并求其准线方程; (2)是否存在平行于 OA(O 为坐标原点)的直线 l ,使得直线 l 与抛物线 C 有公共点,且直线 OA 与 l 的距离等于 5 ?若存在,求直线 l 的方程;若不存在,说明理由. 5

高二数学期中试卷文科第 3 页 共 7 页

20.(12 分)已知函数 f ( x) ? x3 ? 3x 2 ? 9x ? 1( x ? R) . (1)求函数 f ( x) 在点 (0, f (0)) 处的切线方程; (2)求函数 f ( x) 的单调区间.

3 x2 y2 21.(12 分)已知椭圆 C: 2 ? 2 ? 1(a ? b ? 0) 过点(1, ) ,且长轴长等于 4.[来源: 2 a b
(1)求椭圆 C 的方程; (2) F1 、 F2 是椭圆 C 的两个焦点,圆 O 是以 F1 F2 为直径的圆,直线 L: y ? kx ? m 与 圆 O 相切,并与椭圆 C 交于不同的两点 A,B,若 OA ? OB ? ?

3 ,求 k 的值 2

22.(12 分)给出定义在 (0,??) 上的两个函数 f ( x) ? x ? a ln x , g ( x) ? x ? a x .
2

(1)若 f ( x) 在 x ? 1 处取最值.求 a 的值; (2)若函数 h( x) ? f ( x) ? g ( x ) 在区间 (0,1] 上单调递减,求实数 a 的取值范围;
2

(3)试确定函数 m( x) ? f ( x) ? g ( x) ? 6 的零点个数,并说明理由

高二数学期中试卷文科第 4 页 共 7 页

万全中学 2016—2017 学年度第一学期期中考试 高二年级数学试卷(文科)参考答案
1-12. ACDC BBAC ADCD 13. 52 14. 55 15.

2 3 2 [ ,??) 16. 3 2

17. [解析] 若命题 p 为真,则 0<c<1,????2 分 1 5 1 1 由 2≤x+ ≤ 知,要使 q 为真,需 ? 2,即 c ? .?????5 分 x 2 c 2 若 p 或 q 为真命题,p 且 q 为假命题,则 p、q 中必有一真一假,????6 分 当 p 真 q 假时,c 的取值范围是 0 ? c ?

1 ;???8 分 2 1 或c ? 1} .????10 分 2

当 p 假 q 真时,c 的取值范围是 c≥1. ???3 分 综上可知,c 的取值范围是 {c | 0 ? c ?

18. 【解析】 (I)融合指数在 ? 7,8? 内的“省级卫视新闻台”记为 ?1 , ? 2 , ?3 ;融合指数 在 ? 4,5 ? 内的“省级卫视新闻台”记为 ?1 , ? 2 .从融合指数在 ? 4,5 ? 和 ? 7,8? 内的“省级卫 视新闻台” 中随机抽取 2 家的所有基本事件是: ??1 , ?2 ? ,??1 , ?3? ,??2 , ?3? ,??1 , ?1? ,

??1 , ?2 ? , ??2 , ?1? , ??2 , ?2 ? , ??3 , ?1? , ??3 , ?2 ? , ??1 , ?2 ? ,共10 个.
其中,至少有 1 家融合指数在 ? 7,8? 内的基本事件是: ??1 , ? 2 ? , ??1 , ?3 ? , ?? 2 , ?3 ? ,

??1 , ?1? , ??1 , ?2 ? , ??2 , ?1? , ??2 , ?2 ? , ??3 , ?1? , ??3 , ?2 ? ,共 9 个.
所以所求的概率 ? ?

9 . 10

( II ) 这 20 家 “ 省 级 卫 视 新 闻 台 ” 的 融 合 指 数 平 均 数 等 于

4.5 ?

2 8 7 3 ? 5.5 ? ? 6.5 ? ? 7.5 ? ? 6.05 20 20 20 20
2 2 2

19.【解析】(1)将(1,-2)代入 y =2px,得(-2) =2p?1,所以 p=2. 故所求抛物线 C 的方程为 y =4x,其准线方程为 x=-1. (2)假设存在符合题意的直线 l,其方程为 y=-2x+t,

高二数学期中试卷文科第 5 页 共 7 页

由?

? y ? ?2 x ? t 2 得 y +2y-2t=0. 2 y ? 4 x ?

1 因为直线 l 与抛物线 C 有公共点,所以 Δ =4+8t≥0,解得 t≥- . 2 由直线 OA 与 l 的距离 d= 5 |t| 1 可得 = ,解得 t=±1. 5 5 5

? 1 ? ? 1 ? 因为-1 ? ?- ,+∞?,1∈?- ,+∞?, ? 2 ? ? 2 ?
所以符合题意的直线 l 存在,其方程为 2x+y-1=0. 20. 【解析】 (1)由题意 f ' ( x) ? 3x 2 ? 6x ? 9, k ? f ' (0) ? ?9, f (0) ? 1 所以函数在点 (0, f (0)) 处的切线方程为 y ? 1 ? ?9 x ,即 9 x ? y ? 1 ? 0 (2)令 f ' ( x) ? 3x 2 ? 6x ? 9 ? 0 ,解得 x ? ?1或x ? 3 令 f ' ( x) ? 3x 2 ? 6 x ? 9 ? 0 ,解得 ? 1 ? x ? 3 故函数 f ( x) 的单调增区间为 (??,?1), (3,??) ,单调减区间为 (?1,3) 21. 【解析】(1)

x2 y2 ? ?1 4 3

(2)设点 A,B 的坐标分别为( x1 , y1 ) ( x2 , y2 ),由题知

3x 2 ? 4?kx ? m ? ? 12
2

?3x 2 ? 4 y 2 ? 12 ? ? y ? kx ? m

? 8km x1 ? x 2 ? 3 ? 4k 2

x1 x2 ?

4m 2 ? 12 3 ? 4k 2
3 2

m k ?1
2

? c ?1

m2 ? k 2 ? 1

? OA ? OB ? ?

x1 x 2 ? y1 y 2 ? ?

3 2

x1 x 2 ? (kx 1 ? m)( kx 2 ? m) ? ?

3 2

高二数学期中试卷文科第 6 页 共 7 页

3 ?0 2 ? 8km 4m 2 ? 12 3 (1 ? k 2 ) ? km ? m2 ? ? 0 2 2 2 3 ? 4k 3 ? 4k (1 ? k 2 ) x1 x 2 ? km( x1 ? x 2 ) ? m 2 ?
22. 【解析】 (1) f ( x) ? 2 x ?
'

k2 ?

1 2 ,k ? ? 2 2

a x

由已知, f ' (1) ? 0 即: 2 ? a ? 0 ,

解得: a ? 2 所以 a ? 2

经检验

a ? 2 满足题意

(2) h( x) ? f ( x) ? g ( x 2 ) ? x 2 ? a ln x ? x 2 ? ax ? 2 x 2 ? a( x ? ln x)

1 h ' ( x) ? 4 x ? a (1 ? ) 要使得 h( x) ? 2x 2 ? a( x ? ln x) 在区间 (0,1] 上单调递减, x 1 则 h ' ( x) ? 0 ,即 4 x ? a (1 ? ) ? 0 在区间 (0,1] 上恒成立 x
因为 x ? (0,1] ,所以 a ?

4x 2 x ?1
F ( x) ? 4x 2 4 ? 1 1 x ?1 ( )2 ? x x

设函数 F ( x ) ?

4x 2 ,则 a ? F ( x) min x ?1

因为 x ? (0,1] ,所以

1 1 1 ? [1,?? ) ,所以 [( ) 2 ? ] min ? 2 所以 F ( x) min ? 2 ,所以 a ? 2 x x x

(3)函数 m( x) ? f ( x) ? g ( x) ? 6 有两个零点.因为 m( x) ? x 2 ? 2 ln x ? x ? 2 x ? 6 所以 m ' ( x) ? 2 x ?
'

2 1 2 x 2 ? 2 ? x ? x ( x ? 1)(2 x x ? 2 x ? 2) ?1 ? ? ? x x x x
'

当 x ? (0,1) 时, m ( x) ? 0 ,当 x ? (1,??) 时, m ( x) ? 0 所以 m( x) min ? m(1) ? ?4 ? 0 , m(e ? 2 ) ?

(1 ? e)(1 ? e ? 2e 3 ) ? 0, e4

m(e ? 4 ) ?

1 ? 2e 8 ? e 4 (2e 2 ? 1) ?0 e8

m(e 4 ) ? e 4 (e 4 ? 1) ? 2(e 2 ? 7) ? 0
?4 4

故由零点存在定理可知: 函数 m( x) 在 (e ,1) 存在一个零点, 函数 m( x) 在 (1, e ) 存在一 个零点,所以函数 m( x) ? f ( x) ? g ( x) ? 6 有两个零点.
高二数学期中试卷文科第 7 页 共 7 页


赞助商链接

高三2016学年第一学期期中考试文科数学(含答案)

高三2016年第一学期期中考试文科数学(含答案)_数学_高中教育_教育专区。张家口...万全中学 2016--2017 学年第一学期期中考试高三数学(文)试卷一、选择题(本大...

...学年度第一学期期末考试高二文科数学试卷(含答案)

2016至2017学年度第一学期期末考试高二文科数学试卷(含答案)_高一数学_数学_高中教育_教育专区。2016 至 2017 学年度第一学期期末考试 高二文科数学试卷(总分:150 ...

2015-2016学年高二下学期期中考试数学(文)试题 含答案

2015-2016年高二学期期中考试数学(文)试题 含答案_高二数学_数学_高中教育_教育专区。2015/2016 学年度第二学期期中考高二年级 数学试题(文科含答案) 一....

2015-2016学年高二下学期期中考试数学( 文)试题(含答案)

2015-2016年高二学期期中考试数学( 文)试题(含答案)_高中教育_教育专区。...( 10 A.1 B.2 C.3 D.4 ) 第 II 卷(非选择题) 二 填空题:本大题...

2015—2016学年第一学期期中考试高三文科数学试题

2015—2016年第一学期期中考试高三文科数学试题_数学_高中教育_教育专区。保密...考试时间为 120 分钟, 满分 150 分. 2.把选择题选出的答案标号涂在答题卡上...

2015-2016学年 高二下学期期中考试数学(文)试题(含答案)

11 1 x lg x xx x 2015-2016 学年下学期期中考试 高二数学试题(文科含答案) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150 分.考试时间...

江苏徐州2016-2017学年度第一学期高二期中考试数学试题...

江苏徐州2016-2017学年度第一学期高二期中考试数学试题(含答案)_数学_高中教育_教育专区。本文档为江苏省徐州市2016-2017学年度高二学期期中数学理科试卷。...

高二文科数学第一学期期中考试试卷(含答案)

高二文科数学第一学期期中考试试卷(含答案)_高二数学_数学_高中教育_教育专区。...题 号分 一 二 三 总 分 ○题试室号 得 一.选择题:本大题共 10 题;...

2015-2016学年高二下学期期中考试数学(文)试题 Word版...

2015-2016年高二学期期中考试数学(文)试题 Word版含答案_高中教育_教育专区。2015-2016 学年下学期期中考试(卷) 高二数学(文)试卷,满分为 150 分。...

...2016-2017学年高二下学期期中考试数学(文)试题(word...

安徽省池州市第一中学2016-2017学年高二学期期中考试数学(文)试题(word版含答案) - 池州一中 2016—2017 学年度第二学期期中教学质量检测 高二数学(文科) 第...