nbhkdz.com冰点文库

吉林省东北师范大学附属中学2015届高三下学期第四次模拟考试数学(理)试题


2014-2015 学年(下)高三年级“三年磨一剑之亮剑”

第四次模拟考试

数学学科(理)试卷

命题人:高长玉 王艳平 宫海静 刘佰昌 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.

1 ? 1} ,则 A ? B ? x

(A) (??,1] (B) [0,1] (C) (0,1] (2) 设复数 z 满足 (1 ? 2i) z ? 3 ? 4i ,则 z ? (A) 1 ? 2i (B) ?1 ? 2i (C) 2 ? i x (3) 已知命题 p : “ ?x ? R, e ? x ?1 ? 0 ”,则命题 ?p :
(1) 设集合 A ? {x | x ? x}, B ? {x |
2

(D) (??, 0) ? (0,1] (D) ?2 ? i

(A) ?x ? R, e ? x ? 1 ? 0
x

(B) ?x ? R, e ? x ? 1 ? 0
x

(C) ?x ? R, e ? x ?1 ? 0
x

(D) ?x ? R, e ? x ?1 ? 0
x

(4) 各项均为正数的等差数列 {an } 中, a4 a9 ? 36 ,则前 12 项和 S12 的最小值为 (C) 60 1 ? (5) 已知 cos(? ? ? ) ? ? ,则 sin(2? ? ) ? 3 2 7 7 4 2 (A) (B) ? (C) 9 9 9 (A) 78 (B) 48 (D) 72

4 2 9 (6) 高考将至,凭借在五大学科竞赛的卓越表现,我校共有 25 人获得北大、清华保送及降分 录取优惠政策,具体人数如右下表.若随机从这 25 人中任选 2 人做经验交流,在已知恰有 1 人获得北大优惠政策而另 1 人获得清华优惠政策的条件下,至少有 1 人是参加数学竞赛的概 率为
(D) ?

5 12 12 (C) 25
(A)

1 5 43 (D) 100
(B)

学科 北大 清华

数学 4 2

信息 2 1

物理 5 0 2

化学 4 4

生物 1 2 2 2

?x ? y ?1 ? 0 ? 2 2 (7) 已知实数 x , y 满足平面区域 D : ?2 x ? y ? 2 ? 0 ,则 x ? y 的 ?x ? 2 y ? 2 ? 0 ?
最大值为

1 (A) 2
(A) 2 2

正视图 (B) 1 (C) 2 2 (D) 8 开始 俯视图
S ? 0, A ? 1, i ? 1

侧视图

(8) 某几何体的三视图如图所示,则该几何体的体积为

8 3 (9) 执行如图所示的程序框图,则输出的 S ? 3 5 8 (A) (B) (C) 2 3 5
(B) (C)

4 3

(D) 4

12 (D) 7

S?S?

1 A

(10) 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对 “相

S?S?

i ? i ?11

A ? A?i

i?5 ?

A



是 输出 S 结束

关曲线 ” .已知 F1 , F2 是一对相关曲线的焦点, P 是椭圆和双曲线在第一象限的交点,当

?F1PF2 ? 60? 时,这一对相关曲线中椭圆的离心率为
(A)

3 3
x

(B)

3 2

(C)

2 2

(D)

1 2

(11) 函数 y ? y 1 O 1

1 的部分图象大致为 ln | e ? e ? x |
y 1 x O 1 x y 1 O 1 x y 1 O 1 x

(A) (B) (C) (D) x (12) 已知函数 f ( x) ? e ? ax 有两个零点 x1 ? x2 ,则下列说法错误 的是 .. (A) a ? e (C) x1 x2 ? 1 (B) x1 ? x2 ? 2 (D)有极小值点 x0 ,且 x1 ? x2 ? 2 x0

二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.

? ? ? ? ? ? ? 3 (13)已知向量 a, b 满足 | b |? 3 , a 在 b 方向上的投影是 ,则 a ? b =
2
(14)直线 y ? x ? 2 被圆 M : x2 ? y 2 ? 4 x ? 4 y ? 1 ? 0 所截得的弦长为 (15)如下图数阵中的前 n 行的数字和为 2 第一行 3 3 第二行 4 6 4 第三行 5 10 10 5 第四行 6 15 20 15 6 第五行 ……… ……… ; A1

; ; D1 B1 F

C1

D B

A (16)如图,在正四棱柱(底面是正方形的直棱柱) ABCD ? A 1B 1C1D 1 中, ① CD ? PE ② EF // 平面 ABC1 ③ VP? A1DD1 ? VD1 ? ADE

E

C

E 是 BC 的中点, F 是 C1D 的中点, P 是棱 CC1 所在直线上的动点.则下列四个命题:
④过 P 可做直线与正四棱柱的各个面都成等角. 其中正确命题的序号是 (写出所有正确命题的序号). 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分 12 分) 已知函数 f ( x) ? A(sin

x x ? cos ? ? cos sin ? )( A ? 0, 0 ? ? ? ) 的最大值是 2,且 2 2 2

f (0) ? 1 .
(Ⅰ)求 ? 的值; (Ⅱ)已知锐角△ ABC 的内角 A, B, C 的对边分别为 a , b, c ,若 a ? 2 , f (2 A) ? 3 ,

2b sin C ? 2c .求△ ABC 的面积.

(18)(本小题满分 12 分) 砷是广泛分布于自然界中的非金属元素,长期饮用高砷水会直接危害群众的身心健康和 生命安全,而近水农村地区,水质情况更需要关注.为了解甲、乙两地区农村居民饮用水中 砷含 量的基本 情况,分别在 两地随机 选 取 10 个村 子,其砷 含量的调查数 据如下( 单 位: mg /1000L ): 甲地区的 10 个村子饮用水中砷的含量: 52 32 41 72 43 35 45 61 53 44 乙地区的 10 个村子饮用水中砷的含量: 44 56 38 61 72 57 64 71 58 62 (I) 根据两组数据完成茎叶图, 试比较两个地区中 哪个地区的饮用水中砷含量更高,并说明理由; 甲 3 4 5 6 7 乙

(II)国家规定居民饮用水中砷的含量不得超过 50 mg /1000L ,现医疗卫生组织决定向两 个地区中每个砷超标的村子派驻一个医疗救助小组.用样本估计总体,把频率作为概率,若 从乙地区随机抽取 3 个村子, 用 X 表示派驻的医疗小组数, 试写出 X 的分布列并求 X 的期望.

(19)(本小题满分 12 分)

? 如 图 , 直 三 棱 柱 ABC ? A 1B 1C1 中 , A C ? B C

1 2

A , D 是 棱 AA1 的 中 点 , 1A
C1
A1 B1

DC1 ? BD .
(Ⅰ)证明: DC1 ? BC ; (Ⅱ)求二面角 A1 ? BD ? C1 的大小.

D

C
A

B

(20)(本小题满分 12 分) 已知抛物线 C: x ? 2 py( p ? 0) 的焦点为 F,直线 x ? 4 与 x 轴的交点为 P,与 C 的交
2

点为 Q,且 | QF |?

5 | PQ | . 4

(I)求 C 的方程; (II)点 A(?a, a)(a ? 0) 在抛物线 C 上,是否存在直线 l : y ? kx ? 4 与 C 交于点 M , N ,

使得△ MAN 是以 MN 为斜边的直角三角形?若存在, 求出直线 l 的方程; 若不存在说明理由.

(21)(本小题满分 12 分) 已知函数 f ( x) ? x ? ln( x ? a)(a ? 0) . (I)若函数 f ( x ) 在 (0, ??) 单调递增,求 a 取值范围; (II)若函数 f ( x ) 的最小值为 0,且当 x ? 0 时, f ( x) ? kx 2 ,求 k 的最小值.

请考生在第 22,23,24 三题中任选一题做答.注意:只能做选定的题目.如果多做,则 按所做的第一道题目计分. (22)(本小题满分 10 分)选修 4-1:几何证明选讲 如图所示,已知圆 O 外有一点 P ,作圆 O 的切线 PM , M 为切点,过 PM 的中点 N , 作割线 NAB , 交圆于 A 、B 两点, 连接 PA 并延长, 交圆 O 于点 C , 连接 PB 交圆 O 于点 D , 若 MC ? BC . M (I)求证:△ APM ∽△ ABP ; N (II)求证:四边形 PMCD 是平行四边形. P A C O (23)(本小题满分 10 分)选修 4-4:坐标系与参数方程 D B ? x ? 1 ? cos ? (? 为参数).以 O 为极点,x 轴的非 在直角坐标系 xOy 中,圆 C 的参数方程 ?

? y ? sin ?

负半轴为极轴建立极坐标系. (Ⅰ)求曲线 C 的极坐标方程; (Ⅱ)设直线 l 极坐标方程是 2 ? sin(? ? 与直线 l 的交点为 Q ,求线段 PQ 的长.

? ? ) ? 3 3, 射线 OM : ? ? 与圆 C 的交点为 O 、 P , 3 3

(24)(本小题满分 10 分)选修 4-5:不等式选讲 已知函数 f ( x) ?| 3x ? 2 | . (I)解不等式 f ( x) ? 4 ? x ? 1 , (II)已知 m ? n ? 1(m, n ? 0) ,若 | x ? a | ? f ( x) ? 值范围.

1 1 ? (a ? 0) 恒成立,求实数 a 的取 m n


吉林省东北师范大学附属中学2016届高三数学第六次模拟考试试题 理

吉林省东北师范大学附属中学 2016 届高三数学第次模拟考试试题 理注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的...

吉林省长春市东北师范大学附属中学2015届高三下学期第四次模拟考试理数试题解析(解析版)

吉林省长春市东北师范大学附属中学2015届高三下学期第四次模拟考试理试题解析(解析版)_数学_高中教育_教育专区。吉林省长春市东北师范大学附属中学2015届高三下学期...

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题及答案

暂无评价|0人阅读|0次下载 东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题及答案_数学_高中教育_教育专区。2014-2015 学年()高三年级“三年磨一剑...

吉林省东北师范大学附属中学2015届高三下学期第四次模拟考试数学(理)试题

暂无评价|0人阅读|0次下载|举报文档吉林省东北师范大学附属中学2015届高三下学期第四次模拟考试数学(理)试题_数学_高中教育_教育专区。2014-2015 学年(下)高三年...

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题_高中教育_教育专区。2014-2015 学年()高三年级“三年磨一剑之亮剑” 第四次模拟考试 数学学科(理)...

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题_数学_高中教育_教育专区。2014-2015 学年()高三年级“三年磨一剑之亮剑” 第四次模拟考试 数学学科...

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题 Word版含答案

暂无评价|0人阅读|0次下载 东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题 Word版含答案_高中教育_教育专区。2014-2015 学年()高三年级“三年磨一...

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题 Word版含答案

暂无评价|0人阅读|0次下载 东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题 Word版含答案_高中教育_教育专区。2014-2015 学年()高三年级“三年磨一...

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题含答案

东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题含答案_高考_高中教育_教育专区。东北师范大学附属中学2015届高三第四次模拟考试数学(理)试题含答案 ...