nbhkdz.com冰点文库

一类数列不等式的证明答案


一类数列不等式的证明
例 1: 已 知 数 列 ? xn ?的 通 项 公 式 为 xn ? n n ?1 证 明 : x1 ? x 3 ? x 5 ? ? x 2 n ? 1 ? 1 ? xn 1 ? xn

分析:即证:

1 3 5 2n ? 1 ? ? ? ? 2 4 6 2n

1 2n ? 1

/>
解法 1: (数学归纳法) 当 n ? 1 时,
1 2 ? 1 3 1 3 5 2k ? 1 ? ? ? ? 2 4 6 2k 1 2k ? 1

成立

假设当 n ? k 时成立,即

成立

当 n ? k ? 1 时,则有

1 3 5 2k ? 1 2k ? 1 ? ? ? ? ? 2 4 6 2k 2k ? 2

1

2k ? 1 2k ? 2

?

2k ? 1

?

2k ? 1 2k ? 2

即证

2k ? 1 2k ? 2

?

1 2k ? 3

2 ? ( 2k ? 1 ) ( k ?

3? )

( 2? k

2

2? 4 k ? 8 k ? 3 ? 4 k ? 8 k ? 4 )
2 2

显然成立,? 得证。
1 3 5 2n ?1 ? ? ? ? 2 4 6 2n
2n ? 1

解法 2: (利用单调性)即证 令 f (n) ?
1 3 5 2n ? 1 ? ? ? ? 2 4 6 2n

2n ? 1 ? 1



f ( n ? 1) f (n)

1 3 5 2n ? 1 2n ? 1 ? ? ? ? ? 2n ? 3 2n 2n ? 2 ? 2 4 6 ? 1 3 5 2n ? 1 ? ? ? ? 2n ? 1 2 4 6 2n
?

( 2 n ? 1)( 2 n ? 3) 2n ? 2

?1

? f ( n ) 在 n ? N 上单调递减,? f ( n ) ? f (1) ?

3 2

? 1 ,得证。

解法 3: (构造对称式) 也即证 f ( n ) ?
1 3 5 2n ? 1 1 ? ? ? ? ? 2 4 6 2n 3 2n ? 1 2n ? 1 3 5 ? 5 7 ? 2n ? 1 2n ? 1

即证

2n ? 1 2n

?

,即证 (2 n ? 1) (2 n ? 1) ? 4 n (2 n ? 1) , ? 4 n ? 1 ? 4 n ,显然成
2 2
2 2

立,? 得证。 解法: (构造对偶式)

设 A ? x1 ? x 3 ? x 5 ? x 2 n ? 1 ?
2 4 6 2n ? ? ? ?0 3 5 7 2n ? 1 1 2 3 4 2 ? A ? AB ? ? ? ? 2 3 4 5 B ?
? A? 1 2n ? 1

1 3 5 2n ? 1 ? ? ? ,即证 A ? 2 4 6 2n

1 2n ? 1

则A? B 2n 2n ? 1 5 6 2n ? 1 2n 1 ? ? ? ? ? 6 7 2n 2n ? 1 2n ? 1

?

2n ? 1

?

2n

,得证。

小结:数列不等式的证明方法很多,比如数学归纳法,构造函数单调性法,放缩法,等等, 对于与数列中项的乘积有关的不等式的证明是近几年高考的热点之一,对于与
A ? x1 ? x 3 ? x 5 ? x 2 n ? 1 有关的不等式,结合其形式特点,构造形式相似,具有某种对称关系

的 一 对 对 偶 式 B ? x2 ? x4 ? x6 ? x2 n , 通 过 A ? B 使 问 题 得 以 解 决 。 对 于 要 证 明 与
A? b1 ? b2 ? b3 a3 ? bn an

有关的不等式,通过构造 B ?

a1 a 2

a b a a1 a 2 a 3 ? ? ? n (其中 i ? i ? 0 , b 2 b3 b 4 bn ?1 ai bi ? 1

i ? 1, 2, ? n )则 A>B>0,由 A ? A B ?
2

b1 bn ?1

? 0, ?
n ?1

A ?

b1 bn ?1

的目的。
*

变 式 1: 数 列 ?an ?的 通 项 公 式 为 an ? 2 b ?1 b ? 1 b2 ? 1 证 明 :1 ? ? n ? b1 b2 bn
证明:? a n ? 2 即证
n ?1

, 记 b n ? 2 (lo g 2 a n ? 1), n ? N
*

n ? 1, n ? N

,? b n ? 2 n

3 5 7 2n ? 1 ? ? ? ? n ?1 2 4 6 2n 3 5 7 2n ? 1 令A ? ? ? ? 2 4 6 2n 4 6 8 2n ? 2 2n ? 1 2n ? 2 B ? ? ? ? ? ,? 则A ? B 3 5 7 2n ? 1 2n 2n ? 1 3 4 5 6 7 2n ? 1 2n ? 2 2 ? ? A ? AB ? ? ? ? ? ? ? n ?1 2 3 4 5 6 2n 2n ? 1
?A? n ? 1 ,得证。

小 结 :要 证 明 与 A ? B ?

b b1 b 2 b3 ? ? ? n 有关的不等式,可以构造 a1 a 2 a 3 an

a b a a1 a 2 a 3 ? ? ? n , 其 中 i ? i , i ? 1, 2, ? n, 则 0 ? A ? B ? b 2 b3 b 4 bn ?1 ai bi ? 1 b1 bn ?1 达到A ? b1 bn ?1 的目的

A ? AB ?
2

变 式 2 : 数 列 ? a n ? 的 通 项 公 式 为 a n ? 3 n ? 1, 设 ? b n ? 满 足 a n ( 2 求 证 :T n ? 1 ? lo g 2 ( a n ? 3), n ? N 3
?

bn

? 1) ? 1, 并 记 Tn 为 数 列 ? b n ? 的 前 n 项 和

证明:? a n ? 3 n ? 1, a n ( 2

bn

? 1) ? 1
1 an 3n 3n ? 1

? b n ? lo g 2 (1 ?

) ? lo g 2

? T n ? b1 ? b 2 ? ? ? b n ? lo g 2 (

3 6 3n ? ? ) 2 5 3n ? 1

3n 3 ? ? 3 6 ? 3T n ? 1 ? lo g 2 2 ( ? ? ) ? 2 5 3n ? 1 ? ? ?

又? lo g 2 ( a n ? 3) ? lo g 2 (3 n ? 2 )

要证 3T n ? 1 ? lo g 2 ( a n ? 3) ,即证 设A ?

3 6 3n ? ? ? 2 5 3n ? 1

3

3n ? 2 2

3 6 3n 4 7 3n ? 1 5 8 3n ? 2 ? ? ,B ? ? ? ,C ? ? ? 2 5 3n ? 1 3 6 3n 4 7 3n ? 1 3n 3n ? 1 3n ? 2 ? ? ? ,即 A ? B ? C ? 0 3n ? 1 3n 3n ? 1
? A ? ABC ?
3

3n ? 2 2

? A?

3 6 3n ? ? ? 2 5 3n ? 1

3

3n ? 2 2

,得证。 (2)


一类数列不等式的证明答案

一类数列不等式的证明答案 隐藏>> 一类数列不等式的证明例 1: 已知数列 ? xn ?的通项公式为 xn ? n n ?1 证明: x1 ? x 3 ? x 5 ? ? x 2 n ...

与数列有关的不等式的常见证明方法

数列有关的不等式的常见证明方法_高三数学_数学_高中教育_教育专区。一类数列...1? , 答案: 。 cn ? 1 ? 6 ? 2 n ? 3n ? 2 n 1 1 1 1 ? ...

数列不等式证明的几种方法

数列不等式证明的几种方法_高等教育_教育专区。数列不等式证明的几种方法 数列...尤其是对数、指数次幂形式出现的一类 问题,更显导数在解题中的工具性和独特的...

数列与不等式证明专题

数列不等式证明专题 复习建议: 1. “巧用性质、减少运算量”在等差、等比...(3)设数列 n 满足 ,求证: n 分析:条件中有类似于前 n 项和的形式出现,...

训练素材-类比思想与一类数列不等式的证明

训练素材-类比思想与一类数列不等式的证明_高三数学_数学_高中教育_教育专区。专题训练——类比思想与一类数列不等式的证明 1、已知数列 {an } 中,首项 a1 ? ...

数列与不等式综合习题

题型二 数列参与的不等式的证明问题 1 此类不等式...【点评】 存在性问题指的是命题的结论不确定的一类...0 . 【专题训练】参考答案 一、选择题 1.B 【...

强化命题证明一类数列不等式

该文发表于《中学数学教学参考》2006 年第 12 期 强化命题证明一类数列不等式 强化命题证明一类数列不等式 命题证明一类数列 201203 华东师大二附中 任念兵 n 数列...

数列与不等式证明专题

数列与不等式证明专题_数学_高中教育_教育专区。数列不等式的专题练习,非常实用,题目灵活多样,很适合学生做!数列与不等式证明专题复习建议: 1. “巧用性质、...

小结数列与不等式证明题的四种实用方法

小结数列不等式证明题的四种实用方法_数学_高中教育_教育专区。小结数列不等式证明题的四种实用方法高中数学,当数列不等式以综合题的形式出现时,难度较大。怎...