nbhkdz.com冰点文库

共性映射的概念

时间:2016-06-16


6.1 共形映射的概念
? 6.1.1

导数的几何意义 ? 6.1.2 共形映射的概念

返回
1

6.1.1 导数的几何意义

? ? f ( z) ,在区域D内解析, z0 ? D, f ?( z0 ) ? 0 ,又设为平面内通
设函数
的一条有向光滑

曲线,它的参数方程是:

z ? z(t ),

? ?t ? ?
2

它的正向相应于参数t增大的方向,且

z0 ? z (t0 ), z?(t0 ) ? 0,? ? t0 ? ?

z (t ) 在 t 0 的切线与实轴的夹角为 Argz?(t0 ) , f ( z ) ,把曲线C映为过点 ?0 ? f ( z0 ) 的光滑曲线(图1):

3

?

图(一)
4

方程为 ? (t ) ?

f [ z (t )] ,于是在点的切线与

实轴的夹角为:

Arg? ?(t0 ) ? Argf ?( z0 ) ? Argz?(t0 )
即为 Arg? ?(t0 ) ? Argz?(t0 ) ? Argf ?( z0 ) 即? (t ) 在点 ?0 处切向量的辐角与 z (t ) 在点

z0处切向量的辐角之差总是 Argf ?( z0 )与

z (t ) 无关。因此,过点 z0 的任意2条曲线,
在映射 ?

? f ( z)
5

映射之下,在点 f ?( z0 ) ? 0 的点处,夹角的 大小和旋转方向是保持不变的,这就是映射

? ? f ( z) 在 z0 处的保角性。
导数模 | f ?( z0 ) | 的几何意义
f ( z ) ? f ( z0 ) 由于 f ?( z0 ) ? lim z ? z0 z ? z0

6

任取过

z0 的曲线 C : z ? z(t ) 在映射

? ? f ( z)下成为? : ? (t ) ? f [ z (t )] ,那么
| f ( z ) ? f ( z0 ) | | ? ? ?0 | lim ? lim ?| f ?( z0 ) | z ? z0 z ? z0 | z ? z | | z ? z | 0 0 z?C z?C
即像点之间的距离与原来两点的距离之比的极
限与曲线无关,这个极限值 | 在

f ?( z0 ) | 为曲线C

z0 的伸缩率,这就是映射 ? ? f ( z)
7

具有伸缩率的不变性。

总结上述,有: 定理1:设函数 ? ? f ( z ) 在区域内D解析,

? ? f ( z) 在 z0 具有下述两个性质:
(1) 保角性,即通过

z0 ? D

,且

f ?( z0 ) ? 0 那么映射

z0

两条曲线间的夹角

跟经过映射后所得两条曲线间的夹角在大小
和方向上保持不变;
8

(2) 伸缩率的不变性,即通过 曲线的伸缩率均为 |

z0 的任何一条
,而与其形

f ?( z0 ) |

状和方向无关。

9

6.1.2共形映射的概念 定义 设函数 ?

? f ( z) 在 z0 具有保角性和

伸缩率的不变性,则称映射

? 在z0是共形映射。

若映射在区域D内的每一点都是共形的,则 称映射 是D内的共形映射。 且 定理2 如果函数 ? ? f ( z ) 在 z0 是解析,

?

f ?( z0 ) ? 0,则映射 ? ? f ( z) 在区域D内 处处有 f ?( z0 ) ? 0,则映射 ? ? f ( z )
是D内的共形映射。
10

定理3 (黎曼映射定理) 若B为单连通区域,

z0 为B中任意一点,则 其边界多于一点,
在上存在唯一的一个把一一对应地映射成 单位圆内部的共形映射

? ? f ( z) ,且

f ?( z0 ) ? 0 。 f ( z0 ) ? 0 ,

11


函数和映射(经典)

本节课是一堂数学概念教学课,大量的通过图形来表现映射的本质, 在要求学生探求指定对应共性时对学生的观察归纳能力也进行了一定的训练。 同 时从特殊的对应归纳出...

《映射》说课稿

2、重难点分析 (1)映射的概念是比较抽象的,它是在初中所学对应的基础上发展...启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后 进行小结,教师要起到...

映射教案

2.注重学生能力的培养 5 本节课是一堂数学概念教学课,大量的通过图形来表现映射的本质,在要求 学生探求指定对应共性时训练和培养学生的观察能力的。 同时从特殊的...

2015年UML考试题型讲解

或: 由关联关系精化而来 表示整体和部分的含义,...请根据类和属性的映射规则将下图的类 模型转换为...“登录系统” 、所有用户共性用例都具有“修改密码”...

点集拓扑

所以说,集和推广了“数”的概念,映射推广了“数与数之间关系”的概念,两者...同样, 集和就是所有那些具有共性的事物堆的“抽象类”, 所有可以合在一起考虑...

5.2 面向对象程序设计的基本概念

那么这些概念在面向对象程序设计中是采用怎样的机 制来实现映射的呢?这节课我们...同一个类的不同对象之间既有共性又有个性。 对象的个性是指每个对象都有不同...

大学数学概念教学

例如函数概念的引 入,是注意到函数是特殊的映射,所以讲解函数时,要复习映射定义...因为这些问题都有共性:增量比的极限,把这个共性抽象 出来,就产生了导数这个概念...

对隐喻概念的认识

“语言的共性不在于语言的形式而在于人的认知心理。 ” “方位隐喻在很大程度...系统性:Lakoff 的“恒定假说” :映射前后的拓补结构是不变的,目的域和源域 ...

从共形映射角度看Schwarz引理_图文

然后介绍了 Schwarz 引理的一些推广形式,最后指出该引理也适用于在共性映射 下...z)是保角的,则 f(z)为单叶解析函数,故函数单叶解析与共形映射是等价 概念...

概念格上的传媒表达

ic 5 从分类 T 到概念 C 的映射关系,tc 6 概念上的偏序关系 r 7 概念子...举个例子,对于我们上面 i 的媒体来说,这个集合就是{媒体(G 中全部元素的共性...