nbhkdz.com冰点文库

高中数学优秀教学设计案例


高中数学教学设计
1、集合与函数概念实习作业??????????????

2、指数函数的图象及其性质??????????????
3、对数的概念??????????????????? 4、对数函数及其性质(1)?????????????? 5、对数函数及其性质(2)?????????????? 6、函数图象及其应用????????????

?? 7、方程的根与函数的零点?????????????? 8、用二分法求方程的近似解?????????????? 9、用二分法求方程的近似解??????????????

第 1 页 共 72 页

1、集合与函数概念实习作业
一、教学内容分析
《普通高中课程标准实验教科书·数学(1)(人教 A 版)第 44 页。-----《实 》 习作业》 。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受 数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻 的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析
该内容在《普通高中课程标准实验教科书·数学(1)(人教 A 版)第 44 页。学 》 生第一次完成《实习作业》 ,积极性高,有热情和新鲜感,但缺乏经验,所以需要教 师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生 的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等) ,选题时, 各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过 程中受到更多的数学文化的熏陶。

三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该 帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐 步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内 涵。

四、教学目标
1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件 和人物; 2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐; 3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价 值观。

五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用; 难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计
【课堂准备】 1.分组:4~6 人为一个实习小组,确定一人为组长。教师需要做好协调工作, 确保每位学生都参加。 2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题 情况,尽量多地选择不同的题目。

第 2 页 共 72 页

参考题目: (1)函数产生的社会背景; (2)函数概念发展的历史过程; (3)函数 符号的故事; (4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、 欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数; (5)也可自拟题目 3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任 务。 4.搜集资料:针对所选题目,通过各种方式(相关书籍----《函数在你身边》 、 《世界函数通史》 《世界著名科学家传记》等;相关网页 ---WWW.pep.com.cn、 、 http://www.i3721.com/cz/tbjak/qnj/bsdb8njsxxc/ 200605/43459.html 等)搜集素材,包括文字、图片、数据以及音像资料等,并记录 相关资料,写出实习报告。 实习报告 题目 年 月 日

组长及参加人员

教师审核意见及等级

正文 备注 (指出参考文献或相关网页)

5.投影仪、多媒体; 6.把各组的实习报告,贴在班级的学习栏内,让学生学习交流。 【教学过程】 1.出示课题:交流、分享实习报告 2.交流、分享: (由数学科代表主持。小组推荐中心发言人;以下记录均为发言概述) (1)学生 1:函数小史 数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用。 有些重要的数学概念对数学分支的产生起着奠定性的作用。 我们刚学过的函数就是这 样的重要概念。在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各 个领域。最早提出函数(function)概念的,是 17 世纪德国数学家莱布尼茨。最初莱

第 3 页 共 72 页

布尼茨用“函数”一词表示幂。1755 年,瑞士数学家欧拉把给出了不同的函数定义。中 文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》 (1895 年)一书时,把“function”译成“函数”的。 我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些 影响着数学及其相邻学科的发展。 (2)教师带头鼓掌并简单评价 (3)学生 2: 函数概念的纵向发展 : 该同学从早期函数概念——几何观念下的函数到十八世纪函数概念——代数观念 下的函数讲述了函数概念的发展。其中包括 18 世纪中叶著名的数学家欧拉对函数概 念发展的贡献。接着又讲述了十九世纪函数概念——对应关系下的函数。以及现代函 数概念——集合论下的函数。函数概念的定义经过三百多年的锤炼、变革,形成了函 数的现代定义形式。 (4)教师带头鼓掌并简单评价 (5)学生 3:我国数学家李国平与函数 学生 3 描述了数学家中国科学院数学物理学部委员.李国平(1910—1996) ,的 身世和他的成长历程。李国平 1933 年毕业于中山大学数学天文系。后历任中国科学 院数学计算技术研究所所长, 中国科学院武汉数学物理研究所所长, 中国数学会理事, 中国科学院学部委员等职务。 学生还通俗地讲述了李国平先生在微分方程复变函数论 领域的卓越贡献。 (6)教师带头鼓掌并简单评价 (7)学生 4:函数概念对数学发展的影响 该学生从历史上重要数学概念对数学发展的作用是不可估量的事实出发, 讲述了 函数概念对数学发展的深刻影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函 数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十 分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能 帮助我们领悟数学概念对数学发展,数学学习的巨大作用. 函数概念来源于代数学中不定方程的研究. 由于罗马时代的丢番图对不定方程已 有相当研究,所以函数概念至少在那时已经萌芽.该学生说道,早在函数概念尚未明 确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、 双曲函数等等.1673 年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于 另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到 17 世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材, 研究、发掘、拓广数学概念的内涵是何等重要.

第 4 页 共 72 页

(8)教师带头鼓掌并简单评价 (9)学生 5:函数概念的历史演变过程 该学生说,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属 性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其它自然科学的 区别,也决定了数学的特殊性.如果在两个集合元素之间存在有确定的对应关系,就 称为是一个映射. 上述函数概念的历史演变过程,就是一系列弱抽象的过程.学生展示了下表:
在认识自然、 改造自然的过程中不断遇到: 在数量上描述一些现 象的几个不同的量是紧密地互相联系的, 一个量完全决定于其它 量的值,即通过其它量值的一些代数运算

早期函数概念

函数是这样一个量,它是通 代 数 函 数 过其它一些量的代数运算得 到的

18 世 纪 函 数 概 念









函数是指由一个变量与一些 常量通过任何方式形成的解 析表达式

19 世 纪 函 数 概 念

对于给定区间上的每一个 x 变 量 函 数 值,y 总有唯一确定的值与 之对应, 则称 y 是 x 的函数.

近代函数概念









设 M 与 N 是两个集合,f 是 个法则, 若对于 m 中每一个 元素 x,由 f 总有 N 中唯一 确定元素 y 与之对应,则 f 是定义在 M 上的一个函数.

(10)教师带头鼓掌并简单评价 3.课堂小结:

第 5 页 共 72 页

4.实习作业的评定: 实习作业评价参考意见 级 别 很 好 1.小组配合默契(有计划、任务分配合理、每人积极认真) 2.报告材料丰富、可靠、线索清晰 3.拥有自己的独立见解 1.小组配合良好 好 2.报告材料丰富、可靠、线索较清晰 3.有一定的独立见解 一 般 1.小组配合一般 2.报告材料一般、线索基本清晰 3.有一定的分析 标准

较 1.小组配合欠佳 差 2.报告材料贫乏、线索不够清晰

七、教学反思
实习作业是新课程的一个亮点。是培养学生的团队精神,体验合作学习的方式的 重要途径。但事实上,实习作业很容易被教师所忽视,所以想通过该教学设计引起教 师们的重视。在高一刚开始的时候,如何做好第一次实习作业,是很关键的。就我们 学校条件和学生情况,完全可以做好实习作业的,事实证明学生做得很好。可以通过 这次实习作业, 让学生体验合作学习的方式, 通过合作学习品尝分享获得知识的快乐。 再者,通过对数学家的了解,感受数学家的精神,增加学好数学的信心,为今后的学 习打下好的基础。
福鼎市第一中学 曹齐平

点 评 该教学设计具有一定的创新性,在教师的引导下,以学生合作学习的 模式,探讨函数概念的形成、发展的历史以及在这个过程中起重大作用 的历史事件和人物。通过学生的自主学习、探究活动,学生经历收集信 息,整理资料,并从中提取有用信息的过程,让学生体验数学知识发现

第 6 页 共 72 页

和创造的历程,对于提高学生的数学表达和交流的能力具有一定意义。 但该设计中教师的主导地位体现得不够,教师对学生的评价不够具体 (只有鼓掌) 。

2、指数函数的图象及其性质

一、 教学内容分析
本节课是《普通高中课程标准实验教科书·数学(1)(人教 A 版)第二章第 》 一节第二课(2.1.2) 《指数函数及其性质》 。根据我所任教的学生的实际情况,我将 《指数函数及其性质》 划分为两节课 (探究图象及其性质, 指数函数及其性质的应用) , 这是第一节课“探究图象及其性质” 指数函数是重要的基本初等函数之一,作为常 。 见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着 广泛的应用,所以指数函数应重点研究。

二、 学生学习况情分析
指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行 研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实 际例子(GDP 的增长问题和炭 14 的衰减问题) ,已经让学生感受到指数函数的实际背 景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题, 通过超出想象的结果来激发学生学习新知的兴趣和欲望。

三、设计思想
1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象 的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有 一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表 示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,

第 7 页 共 72 页

这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图 让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得 到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中 去。 2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同 伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点: ⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习 方式。 ⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总 结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的 方法。 3.通过课堂教学活动向学生渗透数学思想方法。

四、教学目标
根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概 念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学 知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种 不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感 受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获 得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点
教学重点:指数函数的概念、图象和性质。 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

六、教学过程:
(一)创设情景、提出问题(约 3 分钟) 师:如果让 1 号同学准备 2 粒米,2 号同学准备 4 粒米,3 号同学准备 6 粒米,4 号同学准备 8 粒米,5 号同学准备 10 粒米,??按这样的规律,51 号同学该准备多 少米? 学生回答后教师公布事先估算的数据:51 号同学该准备 102 粒米,大约 5 克重。 师:如果改成让 1 号同学准备 2 粒米,2 号同学准备 4 粒米,3 号同学准备 8 粒 米,4 号同学准备 16 粒米,5 号同学准备 32 粒米,??按这样的规律,51 号同学该 准备多少米? 【学情预设:学生可能说很多或能算出具体数目】 师:大家能否估计一下,51 号同学该准备的米有多重? 教师公布事先估算的数据:51 号同学所需准备的大米约重 1.2 亿吨。

第 8 页 共 72 页

师:1.2 亿吨是一个什么概念?根据 2007 年 9 月 13 日美国农业部发布的最新数 据显示,2007~2008 年度我国大米产量预计为 1.27 亿吨。这就是说 51 号同学所需 准备的大米相当于 2007~2008 年度我国全年的大米产量! 【设计意图:用一个看似简单的实例,为引出指数函数的概念做准备;同时通过 与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲 望。 】 在以上两个问题中,每位同学所需准备的米粒数用 y 表示,每位同学的座号数用

x 表示, y 与 x 之间的关系分别是什么?
学生很容易得出 y=2x( x ? N ? )和 y ? 2 x ( x ? N ? ) 【学情预设:学生可能会漏掉 x 的取值范围,教师要引导学生思考具体问题中 x 的范围。 】 (二)师生互动、探究新知 1.指数函数的定义 师:其实,在本章开头的问题 2 中,也有一个与 y ? 2 x 类似的关系式 y ? 1.073x ( x ? N ? , x ? 20 ) ⑴让学生思考讨论以下问题(问题逐个给出)(约 3 分钟) : ① y ? 2 x ( x ? N ? )和 y ? 1.073x ( x ? N ? , x ? 20 )这两个解析式有什么共同特 征? ②它们能否构成函数? ③是我们学过的哪个函数?如果不是, 你能否根据该函数的特征给它起个恰当的 名字? 【设计意图:引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经 学过一次函数、反比例函数、二次函数,发现 y ? 2 x , y ? 1.073x 是一个新的函数模 型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。 】 引导学生观察,两个函数中,底数是常数,指数是自变量。 师:如果可以用字母 a 代替其中的底数,那么上述两式就可以表示成 y ? a x 的形 式。自变量在指数位置,所以我们把它称作指数函数。 ⑵让学生讨论并给出指数函数的定义。 (约 6 分钟) 对于底数的分类,可将问题分解为: ①若 a ? 0 会有什么问题?(如 a ? ?2 , x ? 在) ②若 ③若 会有什么问题?(对于 x ? 0 , a x 都无意义) 又会怎么样?( 无论 取何值,它总是 1,对它没有研究的必要.)
1 则在实数范围内相应的函数值不存 2

第 9 页 共 72 页

师:为了避免上述各种情况的发生,所以规定 在这里要注意生生之间、师生之间的对话。



.

【学情预设: ①若学生从教科书中已经看到指数函数的定义,教师可以问,为 什么要求 a ? 0,且a ? 1 ; a ? 1 为什么不行? ②若学生只给出 y ? a x , 教师可以引导学生通过类比一次函数 y ? kx ? b, k ? 0 ) ( 、 k 2 反比例函数( y ? , k ? 0 ) 、二次函数( y ? ax ? bx ? c, a ? 0 )中的限制条件, 思 x 考指数函数中底数的限制条件。 】 【设计意图 :①对指数函数中底数限制条件的讨论可以引导学生研究一个函数 应注意它的实际意义和研究价值; ②讨论出 a ? 0,且a ? 1 ,也为下面研究性质时对底数的分类做准备。 】 接下来教师可以问学生是否明确了指数函数的定义, 能否写出一两个指数函数? 教师也在黑板上写出一些解析式让学生判断,如 y ? 2? 3 x , y ? 32 x , y ? ?2 x 。 【学情预设:学生可能只是关注指数是否是变量,而不考虑其它的。 】 【设计意图 :加深学生对指数函数定义和呈现形式的理解。 】 2.指数函数性质 ⑴提出两个问题(约 3 分钟) ①目前研究函数一般可以包括哪些方面; 【设计意图: 让学生在研究指数函数时有明确的目标: 函数三个要素 (对应法则、 定义域、值域、 )和函数的基本性质(单调性、奇偶性)】 。 ②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研 究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底 数取一些数值) ;当然也可以用列表法研究函数,只是今天我们所学的函数用列表法 不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可 以借助一些数学思想方法来思考。 【设计意图:①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以 从图象和解析式(包括列表)不同的角度对函数进行研究; ②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的 有机渗透。 】 ⑵分组活动,合作学习(约 8 分钟) 师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。 ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组 借助电脑通过几何画板的操作从图象的角度入手研究指数函数; ②每一大组再分为若干合作小组(建议 4 人一小组) ;

第 10 页 共 72 页

③每组都将研究所得到的结论或成果写出来以便交流。 【学情预设:考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当 的指导。 】 【设计意图:通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所 得到结论的理解。 】 ⑶交流、总结(约 10~12 分钟) 师:下面我们开一个成果展示会! 教师在巡视过程中应关注各组的研究情况, 此时可选一些有代表性的小组上台展 示研究成果,并对比从两个角度入手研究的结果。 教师可根据上课的实际情况对学生发现、 得出的结论进行适当的点评或要求学生 分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其 它性质? 师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有 1 价值的副产品呢?(如过定点(0,1) y ? a x 与 y ? ( ) x 的图象关于 y 轴对称) , a 【学情预设: ①首先选一从解析式的角度研究的小组上台汇报; ②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报; ③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思 考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函 数图象的变化。 】 【设计意图: ①函数的表示法有三种:列表法、图象法、解析法,通过这个活 动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只 是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是 定义域、值域更是可以直接从解析式中得到的。 ②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的 分析和表达能力,培养其数学素养; ③对指数函数的底数进行分类是本课的一个难点, 让学生在讨论中自己解决分类 问题使该难点的突破显得自然。 】 师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1) , 但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、 值域,但对底数的分类却很难想到。 教师通过几何画板中改变参数 a 的值,追踪 y ? a x 的图象,在变化过程中,让全 体学生进一步观察指数函数的变化规律。 师生共同总结指数函数的图象和性质,教师可以边总结边板书。

第 11 页 共 72 页




0<a<1 a>1

定义域 值 域 过定点(0,1) 非奇非偶 在 R 上是减函数 (三)巩固训练、提升总结(约 8 分钟) 性 质

R

在 R 上是增函数

1 . 例 : 已 知 指 数 函 数 f ( x) ? a x (a ? 0, 且a ? 1) 的 图 象 经 过 点 (3, ? ) , 求
f (0), f (1), f (?3) 的值。

解:因为 f ( x) ? a x 的图象经过点 (3, ? ) ,所以 f (3) ? ? 即 a ? ? ,解得 a ? ? ,于是 f (3) ? ? 。
3

1 3

x 3

所以 f (0) ? 1, f (1) ? 3 ? , f (?3) ?

1

?



【设计意图:通过本题加深学生对指数函数的理解。 】 师:根据本题,你能说出确定一个指数函数需要什么条件吗? 师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布 列一个方程就可以了。 【设计意图: 让学生明确底数是确定指数函数的要素,同时向学生渗透方程 的思想。 】
1 2.练习:⑴在同一平面直角坐标系中画出 y ? 3 x 和 y ? ( ) x 的大致图象,并 3 说出这两个函数的性质;

⑵求下列函数的定义域:① y ? 2

x ?2

1 ,② y ? ( ) x 。 2

1

3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获? 【学情预设: 学生可能只是把指数函数的性质总结一下,教师要引导学生谈

第 12 页 共 72 页

谈对函数研究的学习,即怎么研究一个函数。 】 【设计意图: ①让学生再一次复习对函数的研究方法(可以从也应该从多个 角度进行) ,让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中 去。 ②总结本节课中所用到的数学思想方法。 ③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯 通。】 4.作业:课本 59 页习题 2.1A 组第 5 题。

七、教学反思
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数, 对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要 的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师 可以真正做到“授之以渔”而非“授之以鱼”。 2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不 足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板 可以动态地演示出指数函数的底数的动态过程, 让学生直观观察底数对指数函数单调 性的影响。 3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想 方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去 分析、思考问题。

福州十一中

胡鹏程

点评:
本节是指数函数及其性质概念课,胡老师在教学设计中,让人印 象深刻的是以学生为主体,注重学法指导,重视新旧知识的契合,关 注知识的类比,学习方法的迁移。胡老师能够抓住学生的好奇心,将 娱乐“计算米粒”与数学有机地结合在一起,提高了学生学习本节知 x 识 的 兴 趣 。 在 观 察 “ 准 备 米 粒 ” 得 到 y ? 2n 和 章 开 头 y ? 1.0 7 3 ( x ? N ? , x ? 20 ) 函数关系式后, 巧妙而不失时机地引导学生从具体问 题中抽象出数学模型 y ? a x ,发现指数在变化,这与以前所学函数(一 次函数、二次函数、反比例函数)都不一样,把变化的量用 x 表示, 不变的量用 a 表示;通过让学生给函数命名,举几个指数函数例子这 个小环节,增强学生对指数函数本质的理解,激发学习兴趣,概念的

第 13 页 共 72 页

得到可谓“润物细无声” 。接着,胡老师在设计中还注重对学生探索 能力的培养,让学生类比一次函数( y ? kx ? b, k ? 0 ) 、反比例函数 k 2 ( y ? ,k ? 0) 、二次函数( y ? ax ? bx ? c, a ? 0 )中的限制条件,给出指 x 数函数的定义及底数 a 的取值范围。 在研究指数函数的性质时,胡老师能够紧扣第一章的函数知识, 让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、 定义域、值域、 )和函数的基本性质(单调性、奇偶性) 。通过提问的 方法, 让学生明白研究函数可以从图象和解析式这两个不同的角度进 行出发,将学生的注意力引向本节的第二个知识点——图象及其性 质。设计中将学生进行分组,通过学生的自主探究、合作学习,侧重 对解析式、作图象探索。学生的上台报告,老师借助几何画板的直观 图形,以形助数,以数定形,数形结合的数学方法,收到了较好的研 究效果。

3、对数的概念
一、教学内容分析 本节课是新课标高中数学 A 版必修①中第二章对数函数内容的第一课时,也就 是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起来比较困 难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的 基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作 用。通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的 认识与理解,为学习对数函数作好准备。同时,通过对数概念的学习,对培养学生对 立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。 二、学生学习情况分析 现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信 心不足,对数学存在或多或少的恐惧感。通过对指数与指数幂的运算的学习,学生已 多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得 到了一定的锻炼。因此,学生已具备了探索发现研究对数定义的认识基础,故应通过

第 14 页 共 72 页

指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习 方法。 三、设计思想 学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积 极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实 例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点上,我步步设 问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地 突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握 学习的主动权。 四、教学目标 1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解 对数的性质,掌握以上知识并形成技能。 2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析 得出对数的概念及对数式与指数式的互化。 3、通过学生分组探究进行活动,掌握对数的重要性质。通过做练习,使学生感受 到理论与实践的统一。 4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学 生探究的意识。 五、教学重点与难点 重点 : (1)对数的概念; (2)对数式与指数式的相互转化。 难点 : (1)对数概念的理解; (2)对数性质的理解。 六、教学过程设计 教学 环节

教学程序及设计

设计意图

第 15 页 共 72 页

引例(3 分钟) 1、一尺之棰,日取其半,万世不竭。 (1)取 5 次,还有多长? (2)取多少次,还有 0.125 尺? 分析: 创 设 情 境 引 入 新 课 (1)为同学们熟悉的指数函数的模型,易得 ? 1 ? ? 1 ? ?
?2?
5

32

?1? (2)可设取 x 次,则有 ? ? ? 0.125 ?2?

x

?1? 抽象出: ? ? ? 0.125 ? ?2?

x

x??

2、2002 年我国 GPD 为 a 亿元,如果每年平均增 长 8%,那么经过多少年 GPD 是 2002 年的 2 倍? 分析:设经过 x 年,则有 (1 ? 8%) 抽象出:
x

?2

(1 ? 8%) x ? 2 ? x ? ?

让学生根据 题意, 设未知 数,列出方 程。 这两个例 子都出现指 数是未知数 x 的情况,让 学生思考如 何表示 x,激 发其对对数 的兴趣, 培养 学生的探究 意识。 生活及 科研中还有 很多这样的 例子, 因此引 入对数是必 要的。 正确理解对 数定义中底 数的限制, 为 以后对数函 数定义域的 确定作准备。 同时注意对 数的书写, 避 免因书写不 规范而产生 的错误。

一、对数的概念(3 分钟) 一般地,如果 a(a>0 且 a≠1)的 b 次幂等于 N, 就是

ab

=N 那 么 数 b 叫 做 a 为 底 N 的 对 数 , 记 作

loga N ? b ,a 叫做对数的底数,N 叫做真数。
注意:①底数的限制:a>0 且 a≠1 ②对数的书写格式

log a N

第 16 页 共 72 页

二、对数式与指数式的互化:(5 分钟) 让学生了解 对数与指数 的关系, 明确 对数式与指 数式形式的 区别,a、b 和 N 位置的 不同, 及它们 的含义。 互化 体现了等价 转化这个重 要的数学思 想。

讲 授 新 课

幂底数 指数 幂

← a → 对数底数 ← b → 对数 ← N → 真数

思考: ①为什么对数的定义中要求底数 a>0 且 a≠1? ②是否是所有的实数都有对数呢? 负数和零没有对数

三、两个重要对数(2 分钟) ①常用对数: 以 10 为底的对数 log10 N ,简记为: lgN ②自然对数: 以无理数 e=2.71828?为底的对数的对数 loge N 简记为: lnN . (在科学技术中,常常使用以 e 为底的对 数) 注意:两个重要对数的书写 课堂练习(7 分钟) 1 将下列指数式写成对数式: (1) 2
4

这两个重要 对数一定要 掌握, 为以后 的解题以及 换底公式做 准备。

? 16
? 20

(2) 3 ? 3 ?
b

1 27

(3) 5

a

?1? (4) ? ? ? 0.45 ?2?
(2) log 1 3 ? ?2
3

2 将下列对数式写成指数式: (1) log5 125 ? 3 (3) log10

a ? ?1.069

3 求下列各式的值: (1) log2 64 (2) log9 27

本练习让学 生独立阅读 课本 P69 例 1 和例 2 后思 考完成, 从而 熟悉对数式 与指数式的 相互转化, 加 深对对数的 概念的理解。 并要求学生 指出对数式 与指数式互 化时应注意 哪些问题。 培 养学生严谨 的思维品质。

第 17 页 共 72 页

四、对数的性质(12 分钟)

讲 授 新 课

探究活动 1 求下列各式的值: (1) log3 1 ? 0 (2) lg 1 ? 0 (3) log0.5 1 ? 0 (4) ln 1 ? 0 思考:你发现了什么? “ 1 ” 的 对 数 等 于 零 , 即 loga 1 ? 0 类比:

a0 ? 1

探究活动 2 求下列各式的值: (1) log3 3 ? 1

(2) lg10 ? 1

(3) log0.5 0.5 ? 1 (4) ln e 思考:你发现了什么? 底 数 的 对 数 等 于 “ 1 ” , 即 loga a ? 1

?

1 类比:

a ?a
1

讲 授 新 课

探究活动 3 求下列各式的值: log2 3 log7 0.6 ? 3 (1) 2 (2) 7 log0.4 89 ? 89 (3) 0.4 思考:你发现了什么? 对数恒等式: a
loga N

?

0.6

探究活动由 学生独立完 成后, 通过思 考, 然后分小 组进行讨论, 最后得出结 论。 通过练习 与讨论的方 式,让学生自 己得出结论, 从而更能好 地理解和掌 握对数的性 质。 培养学生 类比、分析、 归纳的能力。 最后, 将学生 归纳的结论 进行小结, 从 而得到对数 的基本性质。

?N

讲 授 新 课

探究活动 4 求下列各式的值: 5 4 (1) log3 3 ? 4 (2) log0.9 0.9 8 (3) ln e ? 8 思考:你发现了什么? n 对数恒等式: loga a ? n

?

5

第 18 页 共 72 页

负数和零没有对数 小 结 “1”的对数等于零,即 loga 1 ? 0 底数的对数等于“1”,即 loga a ? 1 log N 对数恒等式: a a ? N n 对数恒等式: loga a ? n

将学生归纳 的结论进行 小结, 从而得 到对数的基 本性质。

讲 授 新 课

第 19 页 共 72 页

巩 固 练 习

(10 分钟) 1、课本 P70 练习 2、提高训练 (1)已知 x 满足等式 log5 ?log3 (log2 x)? ? 0 ,求 log16 x 值 (2)求值: log 2.5 6.25 ? lg
1 ? ln e 100

巩固指数式 与对数式的 互化, 巩固对 数的基本性 质及其应用。

(3 分钟) 1、 引入对数的必要性----对数的概念 一般地,如果 a(a>0 且 a≠1)的 b 次幂等于 N,就是

ab
归 纳 小 结 强 化 思 想

=N,那么数 b 叫做以 a 为底,N 的对数。记作

loga N ? b
2 、指数与对数的关系

3、对数的基本性质 负数和零没有对数 loga 1 ? 0 loga a ? 1 loga N loga a n ? n 对数恒等式:

总结是一堂 课内容的概 括, 有利于学 生系统地掌 握所学内容。 同时, 将本节 内容纳入已 有的知识系 统中, 发挥承 上启下的作 用。 为下一课 时对数的运 算打下扎实 的基础。

a

?N

一、课本 P82 习题 2.2 A 组 第 1、2 题 二、已知 loga 作业 布置

2 ? x, loga 3 ? y ,求 a 3 x?2 y 的值

三、求下列各式的值:

2 2 log2 5

32 log9 5
板书 设计 引例 1 引例 2 一、对数 的定义

2 ? log2 3 31?2 log3 4
§2.2.1 对数的概念 二、对数式与指数 式的互化 练习 三、对数的基本 性质 四、小结 五、作业布置

作业是学生 信息的反馈, 教师可以在 作业中发现 学生在学习 中存在的问 题, 弥补教学 中的不足。

第 20 页 共 72 页

七、教学反思 本教学设计先由引例出发, 创设情境, 激发学生对对数的兴趣; 在讲授新课部分, 通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过 课堂练习来巩固学生对对数的掌握。

古田一中
点评:

林宁宁

对数概念是高中数学课程的重要内容。本文目标的制订具体、适宜, 且明确地体现在每一教学环节中,教学思路设计符合教学内容实际和学 生实际,层次脉络较清晰。强调对数的概念的理解,对数式与指数式的 相互转化,对书写规格等做了要求,有利于学生作业的规范化,培养学 生严谨的思维品质。高中新课程在教学方面所倡导的新的教学理念,对 于促进课堂教学中学生学习方式的变革起到了巨大作用。然而,这些理 念在指导我们重建课堂教学时也表现出限定的有效性。只有对此有客观 和充分的认识,我们才不至于生搬硬套,适得其反,从一个极端走向另 一个极端。教无定法,重在得法,只要能激发学生的学习兴趣,提高学 生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握 和运用,达到课堂教学的效果,都应该是好的教学方法。

4、对数函数及其性质(1)

第 21 页 共 72 页

一、 教材分析
本小节选自《普通高中课程标准数学教科书-数学必修(一)(人教版)第二章 》 基本初等函数(1)2.2.2 对数函数及其性质(第一课时) ,主要内容是学习对数函数 的定义、 图象、 性质及初步应用。 对数函数是继指数函数之后的又一个重要初等函数, 无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。 与指数函数相 比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是 对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的 应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计 能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面 有所突破。

二、 学生学习情况分析
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象 思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运 算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增 加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求 的拔高,关 注学习过程。

三、设计理念
本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对 学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发 学生的学习热情, 把学习的主动权交给学生, 为他们提供自主探究、 合作交流的机会, 确实改变学生的学习方式。

四、教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数 的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调 性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数 的性质,培养学生运用函数的观点解决实际问题。

五、教学重点与难点
重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.

六、教学过程设计
教学流程: 背景材料→ 引出课题 → 函数图象→ 函数性质 →问题解决→归纳小结

(一)熟悉背景、引入课题
1.让学生看材料: 材料 1(幻灯) :马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,

第 22 页 共 72 页

专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动, 骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道, 世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤 未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛 追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问 题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与 数学有关。

图 4—1 (如图 4—1 在长沙马王堆“沉睡”近 2200 年的古长沙国丞相夫人辛追, 日前奇迹般地“复活”
了)

那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近 2200 年?上 面已经知道考古学家是通过提取尸体的残留物碳 14 的残留量 p, 利用 t ? log
5730

1 2

P

估算尸体出土的年代,不难发现:对每一个碳 14 的含量的取值,通过这个对应关 系, 生物死亡年数 t 都有唯一的值与之对应,从而 t 是 P 的函数;
如图 4—2 材料 2 幻灯)某种细胞分裂时, 1 个分裂成 2 个, 个分裂成 4 个 ??, ( : 由 2

如果要求这种细胞经过多少次分裂,大约可以得到细胞 1 万个,10 万个 ??,不 难发现:分裂次数 y 就是要得到的细胞个数 x 的函数,即 y ? log2 x ;

图 4—2

第 23 页 共 72 页

1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而 得出对数函数的定义:函数 y ? loga x(a ? 0 ,且 a ? 1) 叫做对数函数,其中 x 是自变 量,函数的定义域是(0,+∞) . 1 注意:○ 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:

y ? 2 log2 x , y ? log 5
a ? 1) .

x 2 都不是对数函数.○ 对数函数对底数的限制: (a ? 0 ,且 5

3.根据对数函数定义填空; 例 1 (1)函数 y=logax 的定义域是___________ (其中 a>0,a≠1) (2) 函数 y=loga(4-x) 的定义域是___________ (其中 a>0,a≠1) 说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解, 所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、 拓展、引入复合函数的概念。 [设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概 念本质的理解,不妨从学生自己的生活经历和实际问题入手” 。因此,新课引入不是 按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的 知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数 函数显得不抽象,学生容易接受,降低了新课教学的起点]
2

(二)尝试画图、形成感知
1.确定探究问题 教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题? 学生 1:对数函数的图象和性质 教师: 你能类比前面研究指数函数的思路, 提出研究对数函数图象和性质的方法吗? 学生 2:先画图象,再根据图象得出性质 教师:画对数函数的图象是否象指数函数那样也需要分类? 学生 3:按 a ? 1 和 0 ? a ? 1 分类讨论 教师:观察图象主要看哪几个特征? 学生 4:从图象的形状、位置、升降、定点等角度去识图 教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象: 步骤一: (1)用描点法在同一坐标系中画出下列对数函数的图象 y ? log2 x y ? log 1 x
2

第 24 页 共 72 页

(2)用描点法在同一坐标系中画出下列对数函数的图象 y ? log3 x y ? log1 x
3

步骤二:观察对数函数 y ? log2 x 、 y ? log3 x 与 y ? log 1 x 、 y ? log1 x 的图象特征 ,
2 3

看看它们有那些异同点。 步骤三:利用计算器或计算机,选取底数 a (a ? 0 ,且 a ? 1) 的若干个不同的值,在 同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共 同特征? 步骤四:规纳出能体现对数函数的代表性图象 步骤五:作指数函数与对数函数图象的比较 2.学生探究成果 (1)如图 4—3、4—4 较为熟练地用描点法画出下列对数函数 y ? log2 x 、

y ? log 1 x 、
2

y ? log3 x 、 y ? log1 x 的图象
3

图 4—3

图 4—4 (2)如图 4—5 学生选取底数 a =1/4、1/5、1/6、1/10、4、5、6、10,并推荐几
第 25 页 共 72 页

位代表上台演示‘几何画板’ ,得到相应对数函数的图象。由于学生自己动手, 加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数 a 是如何影响 函数 y ? loga x(a ? 0 ,且 a ? 1) 图象的变化。

图 4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确 y = loga x (a>1) 、y = loga x (0<a<1) 的图象代表对数函数的两种情形。 (图 4—6)

y = loga x

(a>1) 图 4—6

y = loga

x

(0<a<1)

(4)学生相互补充,自主发现了图象的下列特征:①图象都在 y 轴右侧,向 y 轴正 负方向无限延伸;②都过(1、0)点;③当 a>1 时,图象沿 x 轴正向逐步上升; 当 0<a<1 时,图象沿 x 轴正向逐步下降;④图象关于原点和 y 轴不对称,并且能 从图象的形状、位置、升降、定点等角度指出指数函数与对数函数的图象区别; 如图 4—7

第 26 页 共 72 页

图 4—7

3.拓展探究: (1)对数函数 y ? log2 x 与 图象有怎样的对称关系?

y ? log 1 x 、 y ? log3 x 与
2

y ? log1 x 的
3

(2)对数函数 y = loga x (a>1) ,当 a 值增大,图象的上升“程度” 怎样? 说明:这是学生探究中容易忽略的地方,通过补充学生对对数函数图象感性认 识就比较全面。 [设计意图:旧教材是通过对称变换直接从指数函数的图象得到对数函数图象,这样 处理学生虽然会接受了这个事实,但对图象的感觉是肤浅的;这样处理也存在着 函数教学忽视图象、性质的认知过程而注重应用的“功利”思想。因此,本节课 的设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感 性认识。同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效 性。这个环节,还要借助计算机辅助教学作用,增强学生的直观感受]

(三)理性认识、发现性质
1.确定探究问题 教师:当我们对对数函数的图象有了直观认识后,就可以进一步研究对数函数的 性质,提高我们对对数函数的理性认识。同学们,通常研究函数的性质有 哪些途径? 学生:主要研究函数的定义域、值域、单调性、对称性、过定点等性质。 教师:现在,请同学们依照研究函数性质的途径,再次联手合作,根据图象特征 探究出对数函数的定义域、值域、单调性、对称性、过定点等性质 2.学生探究成果 在学生自主探究、合作交流的的基础上填写如下表格: 函 y = loga x (a>1) y = loga x 数

(0<a<1)

第 27 页 共 72 页





定义域 值 域 单调性 过定点 取值范围

R+ R 在(0,+ ?)上是增函数 (1,0)即 x=1,y=0 0<x<1 时,y<0 x>1 时,y>0

R+ R 在(0,+ ?)上是减函数 (1,0)即 x=1,y=0 0<x<1 时,y>0 x>1 时,y<0

[设计意图:发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性, 传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数 的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。 教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠 成]

(四)探究问题、变式训练
问题一: (幻灯) (教材 p79 例 8) 比较下列各组数中两个值的大小: (1) log 23.4 , log 28.5 (2)log
0.3

1.8 , log

0.3

2.7

(3)log a5.1 , log a5.9 ( a>0 , 且 a≠1 ) 独立思考:1。构造怎样的对数函数模型?2。运用怎样的函数性质?
X 小组交流: (1) y ? log2 x 是增函数 (2)y ? log0。3 是减函数

(3)y = loga x,分 a ? 1 和 0 ? a ? 1 分类讨论 变式训练:1. 比较下列各题中两个值的大小: ⑴ log106 ⑶ log0.10.5 log108 log0.10.6 ⑵ log0.56 ⑷ log1.50.6 log0.54 log1.50.4

2.已知下列不等式,比较正数 m,n 的大小:

第 28 页 共 72 页

(1) log

3

m < log

3

n (0<a<1)

(2) log

0.3

m > log 0.3 n (a>1)
? [ H]

(3) log a m < loga n

(4) log a m > log a n

问题二: (幻灯) (教材 p79 例 9)溶液酸碱度的测量。
? 溶液酸碱度是通过 pH 刻画的。pH 的计算公式为 pH= —lg[ H ],其中

表示溶液中氢离子的浓度,单位是摩尔/升。 (1)根据对数函数性质及上述 pH 的计算 公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系; (2)已知纯静水中氢
?7 离子的浓度为[ H ?] = - 10 摩尔/升,计算纯静水的 pH

独立思考:解决这个问题是选择怎样的对数函数模型?运用什么函数性质? ? H ? ]=lg1/[ H ? ], 随着[H ? ]的增大,pH 减小,即 小组交流:pH=-lg[ H ]=lg[ 溶液中氢离子浓度越大,溶液的酸碱度就越大 [设计意图:1。这个环节不做为本节课的重头戏,设臵探究问题只是从另一层面上提 升学生对性质的理解和应用。问题一是比较大小,始终要紧扣对数函数模型,渗透函 数的观点(数形结合)解决问题的思想方法;2。旧教材在图象与性质之后,通常操 练类似比较大小等技巧性过大的问题,而新教材引出问题二,还是强调“数学建模” 的思想,并且关注学科间的联系,这种精神应予领会。当然要预计到,实际教学中学 生理解这道应用题题意会遇到一些困难,教师要注意引导]

(五)归纳小结、巩固新知
1.议一议: (1)怎样的函数称为对数函数? (2)对数函数的图象形状与底数有什么样的关系? (3)对数函数有怎样的性质? 2.看一看:对数函数的图象特征和相关性质

对数函数的图象特征
a ?1 0 ? a ?1 函数图象都在 y 轴右侧 图象关于原点和 y 轴不对称 向 y 轴正负方向无限延伸 函数图象都过定点(1,0) 自左向右看, 自左向右看, 图象逐渐上升 图象逐渐下降 第一象限的图 第一象限的图 象纵坐标都大 象纵坐标都大 于0 于0

对数函数的相关性质
a ?1 0 ? a ?1 函数的定义域为(0,+∞) 非奇非偶函数 函数的值域为 R log1 ? 0 a

增函数

减函数

x ? 1, loga x ? 0

0 ? x ? 1, loga x ? 0

第 29 页 共 72 页

第二象限的图 第二象限的图 象纵坐标都小 象纵坐标都小 于0 于0

0 ? x ? 1, loga x ? 0

x ? 1, loga x ? 0

(六)作业布置、课后自评
1.必做题:教材 P82 习题 2.2(A 组) 第 7、8、9、12 题. 2.选做题:教材 P83 习题 2.2(B 组) 第 2 题. 3. 七、教学反思

从教二十多年,每每设计函数的教学,始终存有困惑的感慨,同时也有 遇旧如新的喜悦。函数始终是高中数学教学的主线,对数函数始终是高 中数学的难点。高中新课改的春风,带来了函数教学设计上的创新,促 使我们在学生学习方法上、教学内容的组织上、教学辅助手段上率先尝 试,但这只是一个起点,目前教学条件还受到制约,如图形计算器未能 普及、课时紧容量大,都影响函数的正常教学,通过这次活动希望能引 起大家的广泛关注并深入探讨!
【参考文献】1。普通高中数学课程标准,人教社,2003 2.章建跃,数学课堂教学设计研究。数学通报,2006.7

宁德市霞浦县第六中学 郭星波
点评:

本文教学目标的设计定位准确,教学重点、难点明确。从两个实际问 题引出对数函数的概念,让学生了解知识产生的背景,初步感受对数函
第 30 页 共 72 页

数是刻画现实世界的一个重要数学模型。教学设计注重引导学生用特殊 到一般的方法探究对数函数图象的形成过程,加深感性认识。同时,帮 助学生确定探究问题、探究方向和探究步骤,确保探究的有效性。同时 借助计算机辅助教学,增强学生的直观感受。 教给学生方法比教给学生知识更重要。本设计能在前一节刚学过指 数函数的图象与性质的基础上,通过类比,以旧引新,自然过渡到本节 的学习,用研究指数函数的图象与性质的方法来研究对数函数的图象与 性质。在教学过程中,教师能引导学生确定探究问题、探究方向和探究 步骤,确保了探究的有效性;让学生动手画图、观察图象,启发学生思 考、实验、分析、归纳,注重探究的过程与方法。在这里,教师成为课 堂教学的组织者与学生学习的促进者,而学生成为学习的主人,学会了 学习,学到了 “对比联系”“数形结合”及“分类讨论”的思想方法。 、 另外,教学情景的设臵、教学例题的选用,以及信息技术来动态演 示,都令人耳目一新,体现了教师的良好的素养及丰厚的学科功底。

5、对数函数及其性质(2)
一、教学内容分析
《普通高中课程标准数学教科书·必修(1)(人民教育出版社)高中一年级第 》 二单元 2.2.2《对数函数的图象和性质》第一课时。 函数是高中数学的主体内容——变量数学的主要研究对象之一, 是中学数学的重 点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数

第 31 页 共 72 页

教学的主要目标。 必修(Ⅰ)2.2.2 对数函数及其性质, 按课标要求教学时间为 3 个学时, 本节课为第 1 课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反 比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图 象和性质的掌握和应用有利于学生对初等函数认识的系统性, 有利于进一步加深对函 数思想方法的理解。为后面进一步探究对数函数的应用及指数函数、对数函数的综合 应用起到承上启下的作用。

二、学情与教材分析
对数函数是高中引进的第二个初等函数,是本章的重点内容。学生在前面的函数 性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数 的概念、 图象和性质以及初步应用, 有利于学生进一步完善初等函数的认识的系统性, 加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让 学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受 y=logax(a>0 且 a≠1)中,a 取不同的值时反映出不同的函数图象,让学生观察、小组 讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性 质。 最后将对数函数、 指数函数的图象和性质进行比较, 以便加深对对数函数的概念、 图象和性质的理解,同时也为后面教学作准备。

三、设计思想
在本节课的教学过程中,通过古遗址上死亡生物体内碳 14 含量与生物死亡年代 关系的探索,引出对数函数的概念。通过对底数 a 的分类讨论,探究总结出对数函数 的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过 例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历 直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学 习习惯,提高学生的数学思维能力的新课程理念。

四、教学目标
1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概 念,激发学生的学习兴趣。 2、通过对对数函数有关性质的研究,渗透数形结合、分类讨论的数学思想。培 养观察、分析、归纳的思维能力和交流能力,增强学习的积极性。掌握对数函数的图 象与性质,并会初步应用。 3、培养学生自主学习、数学交流能力和数学应用意识。通过联系观点分析,解 决两数比较大小的问题。

五、教学重点和难点
重点:1、对数函数的定义、图象、性质。

第 32 页 共 72 页

2、对数函数的性质的初步应用。 难点:底数 a 对对数函数图象、性质的影响。

六、教学过程设计
问题与情境 活动一: 1、你能说出指数函数的概念、图象、 性质吗? 2、 (课件演示) 看 2.2.1 的例 6, t=log 在
5730
1 2

师生活动

设计意图

生:回答问题 1。

通过回顾旧

师:组织学生计算,注 知识,使知识得 意引导学生从函数的实际出 到联系。 P 中, 发,解释两个变量之间的关 创设问题情

境,让学生从生 请同学们用计算器计算,在古遗址 系。 上生物体内碳 14 的含量 P,与之相 教师提出问题,注意引 活中发现问题, 对应生物死亡年代 t 的值,完成下 导 学 生 把 解 析 式 概 括 到 激发学生的学习 表: y=logax 形式。 兴趣。 P t 3、你能归纳出这类函数的一般式吗? 0.5 0.3 0.01 初步建立对 学生思考,归纳概括函 数函数模形。 数特征。

活动二: 归纳给出对数函数的概念 师:(板书)一般地,我 抽象出对数 们把函数 y ? loga x(a ? 0 且 函 数 的 一 般 形
a ? 1) 叫做对数函数, 其中 x 式,让学生感受

你 知 道 为 什 么 a ? 0 且 a ? 1 和 是 自 变 量 , 定 义 域 为 从特殊到一般的
x ? 0 吗?

x ? (0,??) 。

数学思维方法, 维能力。

教学引导学生用对数的 发展学生抽象思 定义分析、回答。

第 33 页 共 72 页

活动三: 1 、 你 能 用 描 点 法 画 出 y ? log2 x 和 生:独立画图,同学间 交流。 师:课堂巡视,个别辅 导,展示画得较好的个别同 学图象。图 5—1 会用描点法 画出这两个函数 的图象。

y ? log 1 x 的图象吗?
2

2、从画出的图象中,你能发现解析式 的区别在哪里?图象有什么不同和 联系?

为对数函数 的图象和性质作 铺垫。

图 5—1

生:个别同学尝试回答。 师:引导学生发现、观 察、对比底数不同对函数图 象的影响。 活动四: 1、你知道下列函数: (1)y ? log2 x, y ? log3 x ,y ? log4 x , (2)y ? log 1 x ,y ? log1 x ,y ? log 1 x
2 3 4

生: 独立思考, 小组讨论。

通过学生讨 论,培养学生交

师:用多媒体课件展示 流合作能力。 各个函数的图象。 获得对数函 生:观察图象讨论、交 数 的 图 象 和 性 流合作,归纳出对数函数的 质。 共同性质。 明确底数 a 师:注意引导学生从函 是确定对数函数 数性质去分析。 的要素,渗透分 类讨论思想。

图象吗?观察并回答有什么共同点和 不同点?

2、你能思考并归纳出 y ? loga x
(a ? 0 且 a ? 1) 中,当 a ? 1 和
0 ? a ? 1 时,两种图象的特点吗?

第 34 页 共 72 页

给出对数函数 y=logax(a>0 且 a≠1)的图象和性质。
a ?1
y u y u x O 图 5-2 1 x

通过对数函 数图象的观察, 分 析总结出对数函 数的性质, 有利于 加深学生对性质 的理解和掌握, 使 学生经历从特殊 到一般的过程, 体 验知识的产生形 成过程, 逐步培养 学生的抽象概括 能力。

0 ? a ?1

图 象
O 1

定 义 域 值 域 在 x ? (0,??) 上为增函数 当 x ? 1时,y ? 0 当 0 ? x ? 1时,y ? 0 活动五: 练 习 , P81 , 1 、 画 出 函 数 并且说 y ? log3 x 和 y ? log1 x 图象,
3

x ? (0,??)

R 过定点(1,0) 当在 x ? (0,??) 上为减函数 当 x ? 1时,y ? 0 当 0 ? x ? 1时,y ? 0

生:独立完成。 学生存在的问题,集中讲评。

掌握对数函

师:课堂巡视,注意收集 数图象的画法。

明这两个函数图象有什么不同点和 相同点? 活动六: 例 1、求下列函数的定义域: 。 (1) y ? loga x 2 (2) y ? loga (4 ? x) 师: (分析)函数的定义域 明确真数大 必须使函数的解析式有意义, 于 0 的条件,掌 根据 y ? loga x 中 x ? 0 中, 所以 握解题步骤。 ① 中 x2 ? 0 , 即 x ? 0 ; ②
4 ? x ? 0, ? x ? 4 。

师: (板书)解: ? x 2 ? 0, (1)
?x ? 0 , 即函数 y ? loga x 2 的定

义域为?x x ? 0?。 ? 4 ? x ? 0, (2)

? x 2 ? 0, ? x ? 4 ,即函数

?x x ? 4?。

y ? loga (4 ? x) 的 定 义 域 为

第 35 页 共 72 页

生:认真听讲,积极思考, 叙述解例 1 的步骤。 练习:P81 ,2, 求下列函数的定义域: (1) y ? log5 (1 ? x) (2) y ? (3) y ? log 7 活动七: 例 2, 比较下列各组数中两个值 的大小。 (1) log2 3.4 (2) log0.3 1.8 (3) log2 0.5 (4) log5 6 师:(分析)请同学们观察 利用对数函 (1)(2)两题,这两个对数底数 数的单调性,进 师:请 4 个同学上台板演。 生:独立完成。 对学生完成情况进行点评。 函数图象性 质,得到进一下

1 log2 x

1 (4) y ? log3 x 1 ? 3x

师:课堂巡视,个别辅导, 的巩固和提高。

log2 8.5

相 同 , 因 此 (1) 可 认 为 是 行两个函数对数

log0.3 2.7 log0.3 0.4 log6 5

y ? log2 x 中,x 取 3.4 和 8.5 值的大小比较,
时 的 函 数 值 。 (2) 可 认 为 是 函数的性质得到

y ? log0.3 x 中,x 取 1.8 和 2.7 初步应用。
的函数值。由 y ? loga x 单调性 可以比较,(3)中底数不相同, 真数也不相同,结合函数图象, 如何共同探索出比较方法,(4) 根据函数的单调性,可寻找中 间量 1 进行比较。 (板书)解: (1)∵ y ? log2 x 在(0,+∞)上是 增函数,且 3.4<8.5, ∴ log2 3.4 ? log2 8.5 ; (2) ∵ y ? log0.3 在(0,+∞) 上是减函数, 1.8<2.7; 且 ∴ log0.3 1.8 ? log0.3 2.7 (3)由 y ? log2 x 图象可知:
log2 0.3 ? 0 由 y ? log0.3 x

补充的(3) (4)两小题是为 了更好地共同探 索出各种比较方 法。

图象可知, log0.3 0.4 ? 0 , ∴ log2 0.3 ? log0.3 0.4 ; (4)∵log5 6 ? log5 5 ? 1

log6 5 ? log6 6 ? 1 ,

第 36 页 共 72 页

∴log5 6 ? log6 5 。

练习:P81 3 比较下列各题中的 两个值的大小。 (1) log10 6 (2) log0.5 6 (3) log 2 0.5 (4) log1.5 1.6 活动八: (补充思考题)看谁能解答下题。 师:鼓励学生大胆尝试。 本题是让部 2 分学有余力的同 设 log a ? 1 ,则实数 a 取值范 3 教师注意引导学生用分类 学积极去完成。 围是( ) 讨论思想,应用函数性质去解 培养学生探 2 2 A、 0 ? a ? B、 ? a ? 1 3 3 答。 索精神。渗透分 2 2 类讨论思想。 C、 0 ? a ? 或a ? 1 D、 a ? 3 3 小结: 1、 你能归纳出这节课的学习内 容吗? 2、 对数函数及其性质和指数函 数及其性质有什么区别和联系? 3、 你能谈谈这节课的收获和体 会吗? 小组讨论,合作交流,由 学生在教学 识,进一步巩固 和提高对数函数 及其性质。 学生代表总结表达,教师补充。 反思中,整理知
3

log10 8 log0.5 4

师:请 4 个同学上台板演,

使学生进一

其余同学独立完成。教师在巡 步应用对数函数 视中,个别辅导。结合学生完 的性质。 成情况,有针对性的点评。

log 2 0.6
log1.5 1.4
3

七、教学反思
函数内容是学生学习上的一个难点,本节课的教学设计能通过实例,渗透数学方 法和思想,与指数函数的类比学习,注重学生探究学习的过程。能够根据教学内容、 学生的认知规律和教学设计的情意原则、过程原则进行设计,突出教师的指导和学生

第 37 页 共 72 页

自主探究、合作交流的学习理念,使学生对概念的产生、图象的形成过程有了较深入 的理解。通过对对数函数的图象和性质的研究,对底数 a 的分类讨论,以达到突破难 点的目的。 通过例题的分析和讲解、 学生的练习, 使函数的图象和性质得到初步应用。 活动八补充的思考题是让层度较好的同学去完成,如果课堂时间不允许,可将此部份 内容留给学生课后去完成。

漳平二中邓荣庆
点评 本节课是根据学生认知规律设计教学, 通过学生实践使学生理解对数 函数的概念,其过程是主要的,通过对函数 y ? log2 x 和 y ? log 1 x 的描点法
2

函数图象的产生, 更重要的是对函数 y ? loga x (a>0 且 a≠1)的底数 a 的变 化,进行观察、分析、归纳等探究活动,形成了对数函数 y ? loga x (a>0 且 a≠1)的底数 a>1 和 0<a<1 的两种情况下的图象,在教师的启发、引导 下,结合前面指数函数的学习方法,数形结合,让学生小组讨论、合作 交流,一起归纳出对数函数的性质。通过教学活动六,使学生对函数的 概念更深刻的理解。教学活动七,使学生用函数图象的单调性解决问题。 例 2 补充的(3)、(4)两个小题,目的是使学生从函数的各个角度分析问 题,解决问题,培养学生探索精神。最后补充的思考题是让学有余力的 同学去完成,使不同层次的学生各有所得。 通过小结,让学生对建立和研究一个具体函数的方法有较完整的认 识。

6、函数图象及其应用

第 38 页 共 72 页

一.教学内容分析:
本堂课安排在人教版必修 1 第二章结束之后,第三章教学之前,对所学常见函数 模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方 面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图 像与方程的联系, 渗透函数与方程的思想及数形结合思想, 为第三章作了很好的铺垫, 承上启下,衔接自然,水到渠成。 学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的 原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联 系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局 部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的 结果放在动态的过程中研究, 这为今后进一步学习函数与不等式等其它知识的联系奠 定了坚实的基础。

二.学生学习情况分析:
学生在学完了第一章《集合与函数概念》 、第二章《基本初等函数》后,对 函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不 齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此 进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对 新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的 空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。 高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃 迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章 的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教 学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函 数这一章,函数的图像就显得尤其重要而且直观。

三.设计思想:
1.尽管我们的教材为学生提供了精心选择的课程资源,但教材仅是教师在教学 设计时所思考的依据,在具体实施中,我们需要根据自己学生数学学习的特点,联系 学生的学习实际,对教材内容进行灵活处理,比如调整教学进度、整合教学内容等, 本节课是必修 1 第二章与第三章的过渡课,既巩固了第二章所学知识,又为第三章学 习埋下伏笔,对教材做了一次成功的加工整合,正所谓磨刀不误砍材功。 2.树立以学生为主体的意识,实现有效教学。现代教学论认为,学生的数学学 习过程是一个学生已有的知识和经验为基础的主动建构的过程, 只有学生主动参与到 学习活动中,才是有效的教学。在本节课的设计中,首先设计一些能够启发学生思维 的活动,学生通过观察、试验、思考、表述,体现学生的自主性和活动性;其次,设 计一些问题情境,而解决问题所需要的信息均来自学生的真实水平,要么定位在学生 已有的知识基础,要么定位在一些学生很容易掌握的知识上,保证课堂上大部分学生 都能够轻松地解决问题。随着学生的知识和信息不断丰富,可以向学生介绍更多类型 的问题情境或更难的应用问题情境, 渗透数学思想, 使学生学会问题解决的一般规律。 3.凡事预则立,不预则废。预设是数学课堂教学的基本要求,但课堂教学不能 过分拘泥于预设的固定不变的程序, 应当开放地纳入弹性灵活的成分以及始料不及的

第 39 页 共 72 页

体验。 一堂好数学课应该是一节不完全预设的课, 在课堂中有教师和学生真实的情感、 智慧的交流,这个过程既有资源的生成,又有过程状态的生成,内容丰富,多方互动, 给人以启发。

四.教学目标:
1.通过复习所学函数模型及其图像特征,使学生对函数有一个较直观的把握和 较形象的理解, 缓解因函数语言的抽象性引起的学生的心理不适应及不自觉的排斥情 绪。 2.通过练习的设置,从解决简单实际问题的过程中,让学生体会函数模型的广 泛适用性,贯穿理论联系实际、学以致用的观点,充分体现数学的应用价值,加强学 生的看图识图能力,激发学习兴趣,引导学生自觉自主参与课堂教学活动。 3.通过对所给问题(例题 1、2)的自主探究和合作交流,使学生理解动与静, 整体与局部的辨证统一关系, 发展学生对变量数学的认识, 体会函数知识的核心作用。 4.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在 联系,体验函数与方程思想、数形结合思想及等价转化思想的意义和价值。

五.教学重点和难点:
教学重点:常见函数模型的图像特征和实际应用。通过课堂师生互动交流,共同 完成对相关知识的系统归纳, 借助多媒体课件演示, 增加学生的直观体验, 深化认识, 突破重点。 教学难点:利用函数图像研究方程问题的思想和方法。在教学过程中,通过学生 自主探究学习,在实际问题的解决中学习将抽象的数学语言与直观的图像结合起来, 充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,实现难点突破。

六.教学过程设计:
环节设置 (一)目 标设疑, 学 生 解 疑,温故 知新(约 8 分钟) 问题驱动 提问 1: 我们学过哪 些基本初等函数? 对它们的大致图像 还有印象吗? 试回忆所学并完成 表格(后附) 练习 1. (后附) 提问 2: “ a ? 1 ” 若将 改 为 “ a?0 且 a ? 1 ” 又该如何选 , 择? 学情预设 回顾常数函数、 一次函 数、 二次函数、 反比例 函数、 指数函数、 对数 函 数 、 幂 函 数 1 ( a ? 1,2,3,?1, ) 的图 2 像。 (板书结合多媒体 演示、实物投影) 设计意图 所有的知识只有 通过学生自身的“再 创造”活动,才能纳入 其认知结构中,才可能 成为下一个有效的知 识。教师必需尊重学生 的主体性,让学生自主 参与探究,切实掌握本 节课的重点。辅以多媒 体直观演示能使教学 更富趣味性和生动性。

试回忆所学并完成表格: 函数名称 常数函数 一次函数

函数解析式
y ? k (k 为常数) y ? kx ? b(k , b 为常数)

函数大致图像 平行与 x 轴的一条直线 一条直线

第 40 页 共 72 页

二次函数

y ? ax2 ? bx ? c(a, b, c 为常数,
a ? 0)

一条抛物线

反比例函数 指数函数 对数函数 幂函数

y?

k ( k ? 0, k 为常数) x

一条双曲线 (多媒体演示) (多媒体演示) (多媒体演示)

y ? a x (a ? 0, a ? 1) y ? loga x(a ? 0, a ? 1) y ? x a (a ? 0, a 为常数)

练习 1.如图 6-1 当 a ? 1 时,在同一坐标系中,函数 y ? a ? x 与 y ? loga x 的图像是 ( D )

y

y

y

y

O

x

O

x

O

x

O

x

(A)

(B)
图 6-1

(C)

(D)

提问 2:若将“ a ? 1 ”改为“ a 环节设置 问题驱动 (二) 演练 练习 2. (后附) 巩固, 深化 提问 3: 你能否写 理解, 学以 出 通 话 收 费 S 致用 (约 35 (元)关于通话 分钟) 时间 t(分)的函 数表达式?这样 的函数称为什么 函数? 例 1. (后附) 师:从函数图像 上可以分析函数 的性质(如定义 域、值域、单调 性、奇偶性等) , 除此之外,函数

? 0 且 a ? 1” ,又该如何选择? 学情预设 设计意图 以问题为驱动,讲练结合, (1)新教材为引 引入对具体实例的详细剖 导学生自主发现、 析,循序渐进,由浅入深, 探 索 留 有 比 较 充 探讨函数模型的广泛应用 分的空间,在教学 和函数与方程的等价转化, 中 我 们 应 充 分 利 渗透数形结合思想。 (板书 用这些空白空间, 结合多媒体演示) 目标问题化,问题 练习 2:借助具体实例,了 设疑化,过程探讨 解简单的分段函数,这是很 化,再给予学生发 重要的一类函数模型,在实 挥的空间,促进他 际问题中有较广泛的应用。 们 主 动 地 学 习 和 本题要求写出函数解析式, 发展,让空白的地 大约 5 分钟可完成。 方丰富多彩也是 例 1:借由函数图像解决函 学 习 方 式 丰 富 的 数性质(值域)是函数图像 表现。

第 41 页 共 72 页

(2)对于学生来 说,学习数学的一 个重要目的是要 学会数学地思考, 数学能力的提高 离不开解题,解题 教学重点是向学 生暴露思维过程 x 2 ? 2x ? 3 ? k 和展示学生的思 有解,k 取何范 维过程。例题的设 围? 计以阶梯式呈现, 提问:一定要画 给学生较为充分 出具体的函数图 的时间,自主探究 像吗?不画图有 和解决问题,教师 没有办法直接给 在评讲时,有意识 出 k 的取值范围 地渗透数形结合 呢? 的思想方法,从而 师:数和形是数 达到传授知识、培 学的两种表达形 养能力的目的,实 x 2 ? 2 x ? 3 ? k 的根的个数 式,在本例中, 现难点的化解与 我们借由函数图 判断,真的要解方程吗?有 突破。 像(形)解决方 其他办法吗? (3)学习函数和 程的根的个数判 认知冲突二:如何作函数 方 程 的 相 互 等 价 断(数) ,以形辅 转化,注意相关内 y ? x 2 ? 2x ? 3 与 y ? k 的 数,这种思想方 容的前后联系,使 法 称 为 数 形 结 图像? 学生加深对所学 合。 结合多媒体辅助演示,作函 知识的系统认识, 变式二:依照这 促进思维的深刻 数 y ? x 2 ? 2x ? 3 与 y ? k 样的解题方法, 性。在潜移默化中 你能否判断方程 的图像,利用函数图像交点 培 养 了 学 生 的 科 ln x ? x ? 4 的 根 个数判断方程根的个数。 学态度和理性精 的个数? 神。 练习 2.某地区电信资费调整后,市话费标准为:通话时间不超过 3 分钟收费 0.2 元, 超过 3 分钟后,每增加 1 分钟多收费 0.1 元(不足 1 分钟按 1 分钟收费) 。通话收费 S (元)与通话时间 t(分)的函数图像可表示为( B )
S 0.4 0.2 O 3 6 t 0.6 0.4 0.2 O 3 6 t S 0.6 0.4 0.2 O 3 6t S 0.6 0.4 0.2 O 3 6 t

图像还有什么妙 用吗?请看例 2。 例 2. (后附) 适当引导,点拨, 引发认知冲突, 学生探究解决。 变式一:若方程

的重要应用,以概念定义方 式呈现,以分段函数的形式 考察,足见题目设计的新 颖,对学生较有吸引力和挑 战性, 给足学生思维、 探究、 讨论的时间,大约 10 分钟 方可完成。 例 2:恰当的问题情境,能 引发学生的认知冲突,使学 生产生明显的意识倾向和 情感共鸣,激发他们的求知 欲和探索精神,引导学生主 动思考。这个问题涉及本课 题的核心内容,给学生充足 的探究时间,大约 20 分钟 可完成。 具体可能的认知冲突有二: 认 知 冲 突 一 : 方 程

(A)

(B)
图 6-2

(C)

(D)

第 42 页 共 72 页

提问 3:你能否写出通话收费 S(元)关于通话时间 t(分)(0 ? t ? 6) 的函数表达式? 这样的函数称为什么函数?

?b(a ? b) 例 1.若定义运算 a ? b ? ? ,则函数 f ( x) ? 3x ? 3? x 的值域为( ?a(a ? b)
( A)(0,1] ( B)[1,??) C.(0,??) D.(??,??)

A )

例 2.当 k ? 环节设置 (三)理 论升华, 思 维 拓 展,总结 评价(约 2 分钟)

时,方程 x 2 ? 2 x ? 3 ? k 有两解?有三解?有四解呢?无解呢?

问题驱动 学情预设 设计意图 提问: 这节课我们学习了那 总结学习内容, 归 提纲挈领, 理清基 些内容?哪些方法?哪些 纳学习方法, 提升 本内容, 形成知识 数学思想?(课堂小结后 数学思想, 拓展学 体系, 提升数学思 附) 生思维, 完成总结 想, 使本节内容不 课后作业: (后附) 评价。 再浮于表面。 1.写下本节课的学习心得 体会。 2.完成三道课后习题 课堂小结: 本节课复习了常见函数模型及其图像特征,体会到利用函数图像解决函数性质的 形象和直观,学习函数和方程的相互等价转化,体会函数方程思想与数形结合思想的 意义和价值。 正如华罗庚所说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分 家万事休。 课后作业: 1.总结本节课的学习心得体会。 波利亚(G·Polya)先生曾指出“一个重大的发现可以解决一道重大的题目,但 是在解答任何一道题目的过程中都会有点滴的发现”。可见,习题在数学学习中具有 非常重要的作用。 学莫贵于自得,请你写下本节课的学习心得体会。

2.课后习题: 1. 某工厂八年来产品总产量 C (即前 t 年年产量之和) 与时间 t 年) ( 的函数如图 6-3, 下列四中说法: (1)前三年中,产量增长的速度越来越快; C (2)前三年中,产量增长的速度越来越慢;

第 43 页 共 72 页

O

3

8

t

(3)第三年后,这种产品停止生产; (4)第三年后,年产量保持不变; 图 6-3 其中,说法正确的是( A ) (A) (2)与(3) (B) (2)与(4) (C) (1)与(3) (D) (1)与(4) )

2.若关于 x 的方程 x 2 ? 6 x ? 8 ? k ? 0 有且只有两个不同的实根,则(

( A)k ? 0

( B)k ? 1

(C)0 ? k ? 1

( D)k ? 1或k ? 0

3.如图 6-4,函数的图像由两条射线及抛物线的一部分组成,求函数 f (x) 的解析式。 变式:讨论方程 f ( x) ? a 的根的个数。
y

2 1

O

1

2

3

4

x

图 6-4 附:板书设计 函数名称 常数函数 一次函数 二次函数 函数解析式
y ? k (k 为常数) y ? kx ? b(k , b 为常数)

函数大致图像 ?? ?? ??

y ? ax2 ? bx ? c(a ? 0, a, b, c, 为
常数)

反比例函数 指数函数 对数函数 幂函数 1.常见函数模型 2.分段函数 练习 2:?? 例 1.??

k y ? ( k ? 0, k 为常数) x

?? ?? ?? ??

y ? a x (a ? 0, a ? 1) y ? loga x(a ? 0, a ? 1) y ? x a (a ? 0, a 为常数)

第 44 页 共 72 页

例 2.??

七.教学反思
1.对教学内容的反思: 对于数学教师来说,他要从“教”的角度去看数学去挖掘数学,不仅要能“做” 、 “会理解” ,还应当能够教会别人去“做” 、去“理解” ,因此教师对教学概念的反思 应当从逻辑的、历史的、关系、辨证等方面去展开。 从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数 的单调性、奇偶性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数 等这些内容是函数教学的基础,但不是函数的全部。 从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与 其他中学数学内容也有着密切的联系, 其中就包括方程的根与函数的图象之间的等价 转化问题。 2.对学生数学学习活动的反思: 师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大 的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。学生的数学学 习只有通过自身的操作和主动的参与才可能是有效的, 更为进一步的是学生的数学学 习只有通过自身的情感体验,树立坚定的自信心才可能是成功的。为此,本节课在教 学中着力于为学生提供丰富多彩的问题情境,关注学生的情感和情绪体验,让学生投 入到现实的、充满探索的数学学习过程中,从而提高数学学习的水平,养成正确的学 习态度和习惯。 3.对数学教学活动的反思: 教学设计的难点在于教师把学术形态的知识转化为适合学生探究的认知形态的 知识。学生的认知结构具有个性化特点,教学内容具有普遍性要求。如何在一节课中 把二者较好地结合起来,是提高课堂教学效率的关键。本节课致力于提高课堂教学的 有效性,其一,有明确的教学目标,其二,能突出重点、化解难点,其三,善于运用 现代化教学手段,其四,根据具体内容,选择恰当的教学方法,其五,关注学生,及 时鼓励,其六,充分发挥学生主体作用,调动学生的学习积极性,其七,切实重视基 础知识、基本技能和基本方法,其八,渗透数学思想方法,提高综合运用能力。在实 际教学中应因材施教,用不一样的标准衡量学生,尽量做到让不同的学生得到不同的

第 45 页 共 72 页

发展。 晋江养正中学 黄培华

点评: 在环节(一)中,考虑到学生的知识水平和理解能力,从学生熟悉 的知识入手,通过适当的问题情景,引导学生在有限的时间内完成对所 学函数模型及其图像的归纳和总结,让学生思考回顾、动手画图、课堂 交流、亲身实践、温故知新。新课程理念指出,学生是学习的主体,所 有的知识只有通过学生自身的“再创造”活动,才能纳入其认知结构中, 才可能成为下一个有效的知识。 在环节(二)中,通过练习 2 的设臵,使同学认识了分段函数及其 在实际生活中的应用,拓展学生的思维;在例 1、例 2 的引入和剖析中, 将问题情境化,过程探讨化,通过精心设计问题情境,不断激发学生的 学习动机,给学生提供学习的目标、思维和空间,使学生自主学习真正 成为可能。新课程的教学理念转变为具体的教学行为时“问题情境”在 教学中的设臵,显得格外重要,而且随着教学过程的发展成为一个连续 的过程,并通过有效追问形成几个高潮,使学生在问题的解决中不断的 学习。对于学生来说,学习数学的一个重要目的是要学会数学的思考, 用数学的眼光去看世界去了解世界。而数学能力的提高离不开解题, “解 题策略的掌握,思想方法的运用,并不在于教师讲了多少,而是在于学 生通过自己的认识活动体验、感悟了多少。 ”这两个例题尽管较为简单, 但蕴含着重要的数学思维方法和思想精髓,具有典型性和示范性。不为 解题而解题,为的是通过解题,让学生感悟和体验数学的理性精神,在

第 46 页 共 72 页

潜移默化中渗透数学思想。 新课程在教学方面具有三大核心理念,即建构性、生成性、多元性, 这些理念对于改造传统的课堂教学起到了巨大作用。然而,这些理念在 指导我们重建课堂教学时也表现出限定的有效性。只有对此有客观和充 分的认识,我们才不至于生搬硬套,适得其反,从一个极端走向另一个 极端。教无定法,重在得法,只要能激发学生的学习兴趣,提高学生的 学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运 用,达到课堂教学的效果,都应该是好的教学方法。

7、方程的根与函数的零点
一、 教学内容分析
本节课选自《普通高中课程标准实验教课书数学 I 必修本(A 版) 》第 94-95 页的 第三章第一课时 3.1.1 方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等 数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分 重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在 整个高中数学教学中占有非常重要的地位。 就本章而言, 本节通过对二次函数的图象的研究判断一元二次方程根的存在性以 及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系, 然后由特 殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程

第 47 页 共 72 页

与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方 程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型 的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗 透“方程与函数” 思想。 总之,本节课渗透着重要的数学思想 “特殊到一般的归纳思想” “方程与函数” 和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教 好本节是至关重要的。

二 学生学习情况分析
地理位置:学生大多来自市区,学生接触面较广,个性较活跃,所以开始可采用 竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较 大,所以可适当对知识点进行拓展。 程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数。 知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画 简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点 提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从 学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解 的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以 及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与 方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三 次函数) ,对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般 归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应 该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教 学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系, 并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归 纳、总结、分析出二者的联系。

三 设计思想
教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣 教学原则:注重各个层面的学生 教学方法:启发诱导式

四、教学目标
以二次函数的图象与对应的一元二次方程的关系为突破口, 探究方程的根与函数 的零点的关系,发现并掌握在某区间上图象连续的函数存在零点的判定方法;学会在 某区间上图象连续的函数存在零点的判定方法。让学生在探究过程中体验发现的乐 趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生的辨证思维以及

第 48 页 共 72 页

分析问题解决问题的能力。

五、教学重点难点
重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。 难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

六、教学程序设计 1 方程的根与函数的零点以及零点存在性的探索 1.1 方程的根与函数的零点
问题 1:解方程(比赛) :①6x-1=0 ;②3x2+6x-1=0 。 再比赛解 3x3+6x-1=0 设计意图:问题 1(产生疑问,引起兴趣,引出课题) 比赛模式引入,调动积极性,可根据学分评定中进行过程性评定加分奖励,充 分调动学生积极性和主动性。 第三题学生无法解答,产生疑惑引入课题:教师介绍说一次方程、二次方程甚 至三次方程、 四次方程的解都可以通过系数的四则运算, 乘方与开方等运算来表示, 但高于四次的方程一般不能用公式求解,如 3x5+6x-1=0 紧接着介绍阿贝尔(挪 威)定理(五次及高于五次的代数方程没有一般的代数解法) ,伽罗瓦(法国)的 近世代数理论,提出早在十三世纪的中国,秦九韶等数学家就提出了高次方程数值 解的解法,振奋学生的民族自豪感,最后引出人们一直在研究方程的近似解方法二 分法引入课题。 问题 2:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如 图 7-1 1 ○方程 x 2 ? 2 x ? 3 ? 0 与函数 y ? x 2 ? 2x ? 3 2 ○方程 x 2 ? 2 x ? 1 ? 0 与函数 y ? x 2 ? 2x ? 1 3 ○方程 x 2 ? 2 x ? 3 ? 0 与函数 y ? x 2 ? 2x ? 1

图 7-1 [师生互动] 师:教师引导学生解方程、画函数图象、分析方程的根与图象和 x 轴交点坐标的 关系,推广到一般的方程和函数引出零点概念。 零点概念:对于函数 y=f(x) x∈D) ( ,把使 f(x)=0 成立的实数 x 叫做函数

第 49 页 共 72 页

y=f(x) x∈D)的。 (
师:填表格 函数 函数的零点 方程的根 生:经过独立思考,填完表格 师提示:根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系? 生:经过观察表格,得出第一个结论 师再问:根据概念,函数 y=f(x)的零点与函数 y=f(x)的图象与 x 轴交点有什 么关系 生:经过观察图像与 x 轴交点完成解答,得出第二个结论 师:概括总结前两个结论(请学生总结) 。 1)概念:函数的零点并不是“点” ,它不是以坐标的形式出现,而是实数。例如 函数 y ? x 2 ? 2x ? 3 的零点为 x=-1,3 2)函数零点的意义:函数 y ? f (x) 的零点就是方程 f ( x) ? 0 实数根,亦即函数
y ? f (x) 的图象与 x 轴交点的横坐标.

y ? x2 ? 2x ? 3

y ? x 2 ? 2x ? 1

y ? x 2 ? 2x ? 1

3)方程 f ( x) ? 0 有实数根 ? 函数 y ? f (x) 的图象与 x 轴有交点 ? 函数 y ? f (x) 有零点。 师:引导学生仔细体会上述结论。 再提出问题:如何并根据函数零点的意义求零点? 生:可以解方程 f ( x) ? 0 而得到(代数法) ; 可以利用函数 y ? f (x) 的图象找出零点. (几何法) 问题 2 一方面让学生理解函数零点的含义,另一方面通过对比让学生再次加深 对二者关系的认识, 使函数图象与 x 轴交点的横坐标到函数零点的概念转变变得更自 然、更易懂。通过对比教学揭示知识点之间的密切关系。 问题 3:是不是所有的二次函数都有零点? 师:仅提出问题,不须做任何提示。 生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形 成结论. 二次函数 y ? ax2 ? bx ? c(a ? 0) 的零点:看△ 1)△>0,方程 ax2 ? bx ? c ? 0 有两不等实根,二次函数的图象与 x 轴有两个交 点,二次函数有两个零点. 2)△=0,方程 ax2 ? bx ? c ? 0 有两相等实根(二重根) ,二次函数的图象与 x 轴有一个交点,二次函数有一个二重零点或二阶零点.
第 50 页 共 72 页

3)△<0,方程 ax2 ? bx ? c ? 0 无实根,二次函数的图象与 x 轴无交点,二次 函数无零点. 第一阶段设计意图 本节的前半节一直以二次函数作为模本研究,此题是从特殊到一般的升华,也全面 总结了二次函数零点情况, 给学生一个清晰的解题思路。 进而培养学生归纳总结能力。

1.2 零点存在性的探索
[师生互动] 师:要求生用连续不断的几条曲线连接如图 4 相交情况,由两个学生上台板书:

A、B 两点,观察所画曲线与直线 l 的

.A

a
.B

b
图4

l

生:两个学生画出连接 A、B 两点的几条曲线后发现这些曲线必与直线 l 相交。 师:再用连续不断的几条函数曲线连接如图 A、B 两点,引导学生观察所画曲线与直 线 l 的相交情况,说明连接 A、B 两点的函数曲线交点必在区间 (a,b) 内。 生:观察下面函数 f(x)=0 的图象(如图 5)并回答

图5 ①区间[a,b]上______(有/无)零点;f(a) f(b)_____0(<或>) · 。 ②区间[b,c]上______(有/无)零点;f(b) f(c)_____0(<或>) · 。 ③区间[c,d]上______(有/无)零点;f(c) f(d)_____0(<或>) · 。 师:教师引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况, 与函数零点是否存在之间的关系。 生:根据函数零点的意义结合函数图象,归纳得出函数零点存在的条件,并进行 交流、评析总结概括形成结论) 一般地,我们有:如果函数 y=f(x)在区间[a,b]上的图象是连续不断的一条

第 51 页 共 72 页

曲线并且有 f(a) f(b)<0,那么函数 y=f(x)在区间(a,b)内有零点,即存 · 在 c ∈(a,b) ,使得 f(c)=0,这个 c 也就是方程 f(x)=0 的根。 第二阶段设计意图: 教师引导学生探索归纳总结函数零点存在定理,培养归纳总结能力和逻辑思维

2、例范研究
例 1.已知函数 f(x)= -3x5-6x+1 有如下对应值表: x -2 109 -1.5 44.17 0 1 1 -8 2 -107

f(x)

函数 y=f(x)在哪几个区间内必有零点?为什么? 设计意图通过本例引导探索,师生互动 探求 1:如果函数 y= f(x)在区间[a,b]上的图象是连续不断的一条曲线,并 且有 f(a) f(b)>0 时,函数在区间(a,b)内没有零点吗? · 探求 2:如果函数 y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并 且有 f(a) f(b)<0 时,函数在区间(a,b)内有零点,但是否只一个零点? · 探求 3:如果函数 y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并 且函数在区间(a,b)内有零点时一定有 f(a) f(b)<0 ? · 探求 4:如果函数 y=f(x)在区间[a,b]上的图象不是一条连续不断的曲线, 函数在区间(a,b)内有零点时一定有 f(a) f(b)<0 ? ·

图 5(反例)

师:总结两个条件: 1)函数 y= f(x)在区间[a,b]上的图象是连续不断的一条曲线 2)在区间[a,b]上有 f(a) f(b)<0 · 一个结论:函数 y= 一个零点 补充:什么时候只有一个零点? (观察得出)函数 y=f(x)在区间[a,b]内单调时只有一个零点 例 2.求函数 f ( x) ? ln x ? 2 x ? 6 的零点个数.问题: 1)你可以想到什么方法来判断函数零点个数? 2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?

f(x)在区间[a,b]内单调则函数在这个区间内有且只有

第 52 页 共 72 页

第三阶段设计意图: 教师引导学生理解函数零点存在定理,分析其中各条件的作用,应用例 1,例 2 加深对定理的理解

3、练习尝试(可根据时间和学生对知识的接受程度适当调整)
1.求函数 y ? x 3 ? 2x 2 ? x ? 2 ,并画出它的大致图象. 2.利用函数图象判断下列方程有没有根,有几个根: (1) x 2 ? x ? 2 ? 0 ; (2) f ( x) ? e x ? 4x ; 3.利用函数的图象,指出下列函数零点所在的大致区间: (1) f ( x) ? ? x 3 ? 3x ? 3 ; (2) f ( x) ? 2 x ln(x ? 2) ? 3 ; [师生互动] 师:多媒体演示;结合图象考察零点所在的大致区间与个数,结合函数的单调性说明 零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数 零点中的重要作用. 生:建议学生使用计算器求出函数的大致区间,培养学生的估算能力,也为下一节的 用二分法求方程的近似解做准备。 第四阶段设计意图:利用练习巩固新知识,加深理解,为用二分法求方程的近似解做 准备

4、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程 x 2 ? e x ? 3 ? 0 的一个解的大约范围,看谁找得范围更小? [师生互动] 师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥 其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和 热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。 生:分组讨论,各抒己见。在探究学习中得到数学能力的提高 第五阶段设计意图: 一是为用二分法求方程的近似解做准备 二是小组探究合作学习培养学生的创新能力和探究意识, 本组探究题目就是为了 培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目 的。

5 课堂小结:
零点概念 零点存在性的判断 零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

6 作业回馈
第 53 页 共 72 页

教材 P108 习题 3.1(A 组)第 1、2 题; 思考:总结函数零点求法要注意的问题;思考可以用求函数零点的方法求方程的 近似解吗?

教学程序设计框图:
创设情境 结合实际问题诱发兴趣,结合二次函数引入课 题. 二次函数的零点及零点存在性的. 研究二次函数在零点、零点之内及零点外的函数值符 号,并尝试进行系统的总结。 零点存在性为练习重点。

组织探究

尝试练习 教学建议 探索研究

分析教材设计意图,探讨教学规律;
进一步探索函数零点存在性的判定。

探索合理教学思想,提出教学建议。

七、教学反思
作业回馈

重点放在零点的存在性判断及零点的确定上。

本设计遵循了由浅入深、循序渐进的原则,分三步来展开这部分的 内容。第一步,从学生认为较简单的一元二次方程与相应的二次函数入 课外活动 手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的 联系,然后将其推广到一般方程与相应的函数的情形。第二步,在用二 分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现 函数与方程的关系。第三步,在函数模型的应用过程中,通过建立函数 模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数 与方程的联系。本节只是函数与方程的关系建立的第一步,教学中忌面 面具到,延展太深。 恰当使用信息技术:本节的教学中应当充分使用信息技术。实际上, 一些内容因为涉及大数字运算、大量的数据处理、超越方程求解以及复 杂的函数作图,因此如果没有信息技术的支持,教学是不容易展开的。 因此,教学中会加强信息技术的使用力度,合理使用多媒体和计算器。

泉州九中陈美珠

点评
本节课在尝试解答五次方程失败后,教师用浓缩的数学史的简介活 跃了课堂气氛,使学生受到数学文化的熏陶,并产生探索新知识的欲望。

第 54 页 共 72 页

紧接着,借助二次函数的图象与 x 轴是否有交点的事实与一元二次方程 的根的关系出发,建立一元二次方程的根与相应的二次函数的零点的联 系,然后将其推广到一般方程与相应的函数的情形,引入了函数零点的 定义,体现了从具体到一般的思维过程。随后,利用函数图像和几个填 空题引导探索函数零点的存在,初步得到函数零点存在的判定方法,体 现了数形结合的思想方法。为了多角度深刻理解函数零点存在定理的内 涵,教师构造了 4 个探究问题。4 个探究问题是本节课亮点,例子设计精 巧,层层递进,由此引发了学生积极的思考、探索与交流。 设计中体现了师生主动参与体验的有机结合,激发了学生探索新知 的兴趣,重点突出,容量适中,由浅入深,环环相扣。整个教学过程教 师只是指导、点评,充分展示知识发生、发展的过程,由学生自主建构, 在此过程中获得对知识的亲身体验,把教学的主动权给了学生,鼓励学 生自主探索、研究性学习,使学生成为真正意义上的学习主人。 值得商讨的是,在给出函数零点的概念后,要让学生明确“方程的 根”与“函数的零点”尽管有密切的联系,但不能将它们混为一谈。这 是个难点,教师未能在此有所突破。

8、用二分法求方程的近似解
一、教学内容分析
本节课选自 《普通高中课程标准实验教科书数学 1 必修本 (A 版) 的第三章 3.1.2 》 用二分法求方程的近似解. 本节课要求学生根据具体的函数图象能够借助计算机或信 息技术工具计算器用二分法求相应方程的近似解, 了解这种方法是求方程近似解的常

第 55 页 共 72 页

用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数 知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程 思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.

二、学生学习情况分析
学生已经学习了函数,理解函数零点和方程根的关系, 初步掌握函数与方程的转 化思想.但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次 方程和超越方程对应函数零点的寻求会有困难. 另外算法程序的模式化和求近似解对 他们是一个全新的问题.

三、设计思想
倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高学生的 数学思维能力,发展学生的数学应用意识;与时俱进地认识“双基”,强调数学的内在 本质,注意适度形式化;在教与学的和谐统一中体现数学的文化价值;注重信息技术 与数学课程的合理整合.

四、教学目标
通过具体实例理解二分法的概念,掌握运用二分法求简单方程近似解的方法,从 中体会函数的零点与方程根之间的联系及其在实际问题中的应用; 能借助计算器用二 分法求方程的近似解,让学生能够初步了解逼近思想;体会数学逼近过程,感受精确 与近似的相对统一;通过具体实例的探究,归纳概括所发现的结论或规律,体会从具 体到一般的认知过程.

五、教学重点和难点
1.教学重点:用“二分法”求方程的近似解,使学生体会函数零点与方 程根之间的联系,初步形成用函数观点处理问题的意识. 2.教学难点:方程近似解所在初始区间的确定,恰当地使用信息技术工具,利 用二分法求给定精确度的方程的近似解.

六、教学过程设计
(一)创设情境,提出问题 问题 1:在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了 故障.这是一条 10km 长的线路,如何迅速查出故障所在? 如果沿着线路一小段一小段查找, 困难很多. 每查一个点要爬一次电线杆子. 10km 长,大约有 200 多根电线杆子呢. 想一想,维修线路的工人师傅怎样工作最合理? 以实际问题为背景,以学生感觉较简单的问题入手,激活学生的思维,形成学生 再创造的欲望.注意学生解题过程中出现的问题,及时引导学生思考,从二分查找的

第 56 页 共 72 页

角度解决问题. [学情预设] 学生独立思考,可能出现的以下解决方法: 思路 1:直接一个个电线杆去寻找. 思路 2:通过先找中点,缩小范围,再找剩下来一半的中点. 老师从思路 2 入手,引导学生解决问题:

如图,维修工人首先从中点 C.查用随身带的话机向两个端点测试时,发现 AC 段正常,断定故障在 BC 段,再到 BC 段中点 D,这次发现 BD 段正常,可见故障在 CD 段,再到 CD 中点 E 来查.每查一次,可以把待查的线路长度缩减一半,如此查下去, 不用几次,就能把故障点锁定在一两根电线杆附近. 师:我们可以用一个动态过程来展示一下(展示多媒体课件) . 在一条线段上找某个特定点, 可以通过取中点的方法逐步缩小特定点所在的范围 (即二分法思想) . [设计意图] 从实际问题入手,利用计算机演示用二分法思想查找故障发生点, 通过演示让学生初步体会二分法的算法思想与方法, 说明二分法原理源于现实生活, 并在现实生活中广泛应用. (二)师生探究,构建新知 问题 2:假设电话线故障点大概在函数 f ( x) ? ln x ? 2 x ? 6 的零点位置,请同学们 先猜想它的零点大概是什么?我们如何找出这个零点? 1.利用函数性质或借助计算机、计算器画出函数图象,通过具体的函数图象帮 助学生理解闭区间上的连续函数,如果两个端点的函数值是异号的,那么函数图象就 一定与 x 轴相交,即方程 f ( x) ? 0 在区间内至少有一个解(即上节课的函数零点存在 性定理,为下面的学习提供理论基础) .引导学生从“数”和“形”两个角度去体会函数零 点的意义,掌握常见函数零点的求法,明确二分法的适用范围. 2.我们已经知道,函数 f ( x) ? ln x ? 2 x ? 6 在区间(2,3)内有零点,且 f (2) < 0, f (3) >0.进一步的问题是,如何找出这个零点? 合作探究:学生先按四人小组探究.(倡导学生积极交流、勇于探索的学习方式, 有助于发挥学生学习的主动性) 生:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可 以得到零点的近似值. 师:如何有效缩小根所在的区间? 生 1:通过“取中点”的方法逐步缩小零点所在的范围.

第 57 页 共 72 页

生 2:是否也可以通过“取三等分点或四等分点”的方法逐步缩小零点所在的范 围? 师:很好,一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一 定精确度的要求下,可以得到零点的近似值.其实“取中点”和“取三等分点或四等分点” 都能实现缩小零点所在的范围.但是在同样可以实现缩小零点所在范围的前提下, “取 中点”的方法比取“三等分点或四等分点”的方法更简便.因此,为了方便,下面通过“取 中点”的方法逐步缩小零点所在的范围. 引导学生分析理解求区间 ( a, b) 的中点的方法 x ?
a?b . 2

合作探究: (学生 2 人一组互相配合,一人按计算器,一人记录过程.四人小组 中的两组比较缩小零点所在范围的结果.) 步骤一:取区间(2,3)的中点 2.5,用计算器算得 f (2.5) ? ?0.084 ? 0 . 由 f (3) >0,得知 f (2.5) ? f (3) ? 0 ,所以零点在区间(2.5,3)内。 步骤二:取区间(2.5,3)的中点 2.75,用计算器算得 f (2.75) ? 0.512 ? 0 .因为
f (2.5)? f (2.75) 0 ? ,所以零点在区间(2.5,2.75)内.

结论:由于(2,3) (2,3) ? (2.5,3) ? (2.5, 2.75) ,所以零点所在的范围确实越来越小 了. 如果重复上述步骤,在一定精确度下,我们可以在有限次重复上述步骤后,将所 得的零点所在区间内的任一点作为函数零点的近似值.特别地,可以将区间端点作为 函数零点的近似值. 引导学生利用计算器边操作边认识,通过小组合作探究,得出教科书上的表 3— 2,让学生有更多的时间来思考与体会二分法实质,培养学生合作学习的良好品质. [学情预设]学生通过上节课的学习知道这个函数的零点就是函数图象与 x 轴的交 点的横坐标,故它的零点在区间(2,3)内.进一步利用函数图象通过“取中点”逐 步缩小零点的范围,利用计算器通过将自变量改变步长减少很快得出表 3—2,找出 零点的大概位置. [设计意图]从问题 1 到问题 2,体现了数学转化的思想方法,问题 2 有着承上启 下的作用,使学生更深刻地理解二分法的思想,同时也突出了二分法的特点.通过问 题 2 让学生掌握常见函数零点的求法,明确二分法的适用范围. 3.问题 3:对于其他函数,如果存在零点是不是也可以用这种方法去求它的近似 解呢?

第 58 页 共 72 页

引导学生把上述方法推广到一般的函数,经历归纳方法的一般性过程之后得出二 分法及用二分法求函数 f (x) 的零点近似值的步骤. 对于在区间 [a , b] 上连续不断且满足 f (a ) · f (b) ? 0 的函数 y ? f (x) ,通过不断 地把函数 f (x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而 得到零点近似值的方法叫做二分法. 注意引导学生分化二分法的定义(一是二分法的适用范围,即函数 y ? f (x) 在区 间 [a , b] 上连续不断,二是用二分法求函数的零点近似值的步骤) . 给定精确度 ? ,用二分法求函数 f (x) 的零点近似值的步骤如下: 1、确定区间 [a , b] ,验证 f (a ) · f (b) ? 0 ,给定精确度 ? ; 2、求区间 (a , b) 的中点 c ; 3、计算 f (c) : (1)若 f (c) = 0 ,则 c 就是函数的零点; (2)若 f (a ) · f (c) < 0 ,则令 b = c (此时零点 x0 ? (a, c) ) ; (3)若 f (c) · f (b) < 0 ,则令 a = c (此时零点 x0 ? (c, b) ) ; 4、判断是否达到精确度 ? : 即若 | a ? b |? ? ,则得到零点零点值 a (或 b ) ;否则重复步骤 2—4. 利用二分法求方程近似解的过程,可以简约地用下图表示.
初始区间 取区间中点

中点函数值为零 是 否 取新区间

满足精确度 是 结束 否

[学情预设] 学生思考问题 3 举出二次函数外,对照步骤观察函数
f ( x) ? ln x ? 2 x ? 6 的图象去体会二分法的思想. 结合二次函数图象和标有 a 、b 、x0 的

数轴理解二分法的算法思想与计算原理. [设计意图]以问题研讨的形式替代教师的讲解, 分化难点、 解决重点, 给学生 “数

第 59 页 共 72 页

学创造”的体验,有利与学生对知识的掌握,并强化对二分法原理的理解.学生在讨 论、合作中解决问题,充分体会成功的愉悦.让学生归纳一般步骤有利于提高学生自 主学习的能力,让学生尝试由特殊到一般的思维方法.利用二分法求方程近似解的过 程,用图表示,既简约又直观,同时能让学生初步体会算法的思想. (三)例题剖析,巩固新知 例:借助计算器或计算机用二分法求方程 2 x ? 3x ? 7 的近似解(精确度 0.1). 两人一组, 一人用计算器求值, 一人记录结果; 学生讲解缩小区间的方法和过程, 教师点评. 本例鼓励学生自行尝试,让学生体验解题遇阻时的困惑以及解决问题的快乐.此 例让学生体会用二分法来求方程近似解的完整过程,进一步巩固二分法的思想方法. 思考: 问题(1):用二分法只能求函数零点的“近似值”吗? 问题(2):是否所有的零点都可以用二分法来求其近似值? 教师有针对性的提出问题, 引导学生回答, 学生讨论, 交流. 反思二分法的特点, 进一步明确二分法的适用范围以及优缺点,指出它只是求函数零点近似值的“一种” 方法. [设计意图]及时巩固二分法的解题步骤,让学生体会二分法是求方程近似解的有 效方法.解题过程中也起到了温故转化思想的作用. (四)尝试练习,检验成果 1、下列函数中能用二分法求零点的是( ).
y

。 (A)

o
(D)

x

(B)

(C)

[设计意图]让学生明确二分法的适用范围. 2、用二分法求图象是连续不断的函数 y ? f (x) 在 x ∈(1,2)内零点近似值的过程中得 到 f (1) ? 0 , f (1.5) ? 0 , f (1.25) ? 0 ,则函数的零点落在区间( (A)(1,1.25) (B)(1.25,1.5) (C)(1.5,2) ).

(D) 不能确定

[设计意图]让学生进一步明确缩小零点所在范围的方法.

第 60 页 共 72 页

3.借助计算器或计算机,用二分法求方程 x ? 3 ? lg x 在区间(2,3)内的近似解(精 确度 0.1). [设计意图] 进一步加深和巩固对用二分法求方程近似解的理解. (五)课堂小结,回顾反思 学生归纳,互相补充,老师总结: 1、理解二分法的定义和思想,用二分法可以求函数的零点近似值,但要保证该 函数在零点所在的区间内是连续不断; 2、用二分法求方程的近似解的步骤. [设计意图]帮助学生梳理知识,形成完整的知识结构.同时让学生知道理解二分 法定义是关键,掌握二分法解题的步骤是前提,实际应用是深化. (六)课外作业 1.[书面作业]第 92 页习题 3.1A 组 3、4、5; 2.[知识链接]第 91 页阅读与思考“中外历史上的方程求解” . 3. [课外思考]:如果现在地处学校附近的地下自来水管某处破裂了,那么怎么找出 这个破裂处,要不要把水泥板全部掀起? 板书设计 §3.1.2 用二分法求方程的近似解 1.二分法的定义 2.用二分法求函数的零点近似值的步骤 3.用二分法求方程的近似解

七、教学反思
这节课既是一堂新课又是一堂探究课.整个教学过程,以问题为教学出发点, 以 教师为主导,学生为主体,设计情境激发学生的学习动机,激励学生去取得成功,顺 应合理的逻辑结构和认知结构,符合学生的认知规律和心理特点,重视思维训练,发 挥学生的主体作用,注意数学思想方法的溶入渗透,满足学生渴望的奖励结构.整个 教学设计中,特别注重以下几个方面: (1)重视学生的学习体验,突出他们的主体地位.训练了他们用从特殊到一般,再 由一般到特殊的思维方式解决问题的能力.不断加强他们的转化类比思想. (2)注重将用二分法求方程的近似解的方法与现实生活中案例联系起来,让学生 体会数学方法来源于现实生活,又可以解决生活中的问题. (3)注重学生参与知识的形成过程,动手、动口、动脑相结合,使他们“听”有 所思,“学”有所获,增强学习数学的信心,体验学习数学的乐趣. (4)注重师生之间、同学之间互动,注重他们之间的相互协作,共同提高.
第 61 页 共 72 页

福建师大附中

周裕燕

点评: 本节课既是一堂新课又是一堂探究课.如何在数学课堂教学中体现新 课程理念,本课例进行了有益的探索。整个教学设计过程,以问题为出发 点,以教师为主导,学生为主体,设计的问题情境顺应合理的逻辑结构和 认知结构,符合学生的认知规律和心理特点,有效地激发了学生的学习 动机;重视思维训练,注意数学思想方法的溶入渗透。 本节课采用 “问题情境— 意义建构— 数学理论— 数学运用— 回 顾反思” 的教学流程。周老师在课题引入时,以实际问题为背景,以学 生感觉较简单的问题入手,“让学生找出电话线故障点, ”有效地激发学 生学习的欲望和探究的兴趣。采用探究教学方式,在师生共同探究的过 程中,构建新的知识,既让学生了解数学概念和结论产生的过程,同时 也培养了学生独立思考和勇于质疑的品质。此外,周老师在本课例的设 计中,能很好地将现代信息技术与数学课程进行有机的整合,使“方法 建构、技术运用、算法渗透”三者同步发展。 “用二分法求方程的近似解”是对函数知识的拓展,既体现了函数在 解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合 思想、二分法的算法思想打下了基础。周老师不仅注意到本节知识在这 一章中的重要性,而且还注意将本节知识与现实生活中的案例联系起来, 让学生体会数学方法来源于现实生活,又可以解决生活中的问题。

9、用二分法求方程的近似解
一、教学内容分析
本节选自《普通高中课程标准实验教科书 ·数学 1》人教 A 版第三单元第一节 第二课,主要是分析函数与方程的关系。教材分三步来进行:第一步,从学生认为较 简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根 与相应函数的零点的联系。然后推广为一般方程与相应函数的情形;第二步,在用二 分法求方程近似解的过程中,通过函数图像和性质来研究方程的解,体现方程和函数 的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面 的体现函数与方程的关系,逐步建立起函数与方程的联系。 本节课是这一小节的第二节课,即用二分法求方程的近似解。它以上节课的“连
第 62 页 共 72 页

续函数的零点存在定理”为确定方程解所在区间为依据,从求方程近似解这个侧面来 体现“方程与函数的关系” ;而且在“用二分法求函数零点的步骤”中渗透了算法的 思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注 数学文化以及重视信息技术应用”的理念。求方程近似解其中隐含“逼进”的数学思 想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据。

二、学生学习情况分析
同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生 活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗 透数学思想关注数学文化的目的,学生也能够很容易理解这种方法。其中运用“二分 法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分 法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子” 。

三、设计理念
本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实 际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合 的教学方法,注重提高学生数学的提出问题、分析问题和解决问题的能力,让学生经 历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构 等思维过程。

四、教学目标
1、理解二分法的概念,掌握运用二分法求简单方程近似解的方法;利用信息技 术辅助教学,让学生用计算器自己验证求方程近似值的过程; 2、 体会二分法的思想和方法, 使学生意识到二分法是求方程近似解的一种方法; 让学生能够了解近似逼近思想,培养学生能够探究问题的能力和创新能力,以及 严谨的科学态度; 3、体验并理解函数与方程的相互转化的数学思想方法;感受正面解决问题困难 时,通过迂回的方法得到解决的快乐。

五、教学重点与难点 教学重点是能够借用计算器,用二分法求相应方程的近似解。根所在区间的确
定及逼近的思想;难点是对二分法的理论支撑的理解,区间长度的缩小。

第 63 页 共 72 页

六、教学过程设计
1.教学基本流程图 深入探索发现问题提出课题“如 何求函数零点?” 经历游戏过程探索一般规律“二分法”

通过游戏感受身边的数学 解决问题“如何应用二分法求函数的零点”

应用所得方法解决实际问题“求出函数的零点”

通过练习与作业进行巩固与提高

课堂小结将所得到的知识进行归纳整理加入已有的知识链 2.教学情景设计 教 学 过 程 1、教师从学生 熟悉的电视节目, 引导学生体会、分 1、大家都 创 看过李咏主持 的<幸运 52>吧, 今天咱也试一 回(出示游戏)。 析、归纳迅速猜价 的方法。 2、学生能够主 动参与游戏,并且 参与游戏的同学可 以比较并总结经 验。学生会有很多 种方案出来。3、对 [设计意图: 1、利用视屏与游 戏的形式, 学生会 踊跃参与; 商品价 格 竞猜也 是学 生 熟悉的, 竞猜的方 法会很多样, 可以 进行竞赛; 2、通过问题 2,启发学生寻找 确定区间的依据, 教学设计 学情预设 设计意图 知识链接

设 情 景

第 64 页 共 72 页

于“问题 2” 学生能 够顺利的得出“主 持人的“高了,低 了”的回答是判断 价格所在区间的依 据”这个结论。 2、竞猜中, “高了” “低 、 了”的含义是什 么?如何确定 价格的最可能 的范围? 3、如何才 能更快的猜中 商品的预定价 格? 4、 “二分” 的 思 路 是 什 么? 1、上节课 我们学了什么 定理,它的作用 是什么?还有 什么问题没有 解决? 组 2、已知函 数 在区间(2,3) 内存在一个零 点;如何求出方 程
ln x ? 2 x ? 6 ? 0

为后面探索 “用二 分 法求方 程近 似 解” 的时候埋下伏 笔; 3、 通过游戏, 让 学生经 历游 戏 过程, 感受数学来 自生活, 激发学生 的学习兴趣; 引导 学 生善于 发现 身 边的数学, 培养学 生 的归纳 演绎 的 能力; 学会将实际 情 景转化 为数 学 模型。4、通过比 较 不同的 方法 得 出 最快的 竞猜 的 方法——二分 法;]

4、此时教师通 过“问题 3” 引导学 生进行比较哪种方 法更快更好。从中 学生可以得到用二 分法解决问题的思 路——二分指的是 将解所在区间平均 地分为两个区间。

1、教师通过 “问题 1” 对上节课 的内容进行复习引 入,点出今天的课 题。并且有前面游 戏作为伏笔,学生 能够得出“连续函 数零点存在定理”

[设计意图: 1、开门见山,延 续 上一节 课的 内 容 继续深 入的 研 究, 使得知识有一 个 连接让 学生 能 够 很容易 的将 知 识 建构到 旧的 知 识体系中。 2、运用问题 1,将学生的思路 与 前面已 解决 的 问题联系起来, 引 导学生层层深入, 抽丝拨茧, 学习如

织 探 究

f ( x) ? ln x ? 2 x ? 6 是判断方程的根所

在区间的依据。2、 通过 “问题 2” 应用 具体的题目引导学 生进行思考。学生 通过引导将方程的 解与商品的价格联

在区间(2,3)

第 65 页 共 72 页

的近似解(精确 度为 0.01)?与 刚才的游戏是 否 有 类 似 之 处? 3、精确度 的 含 义 是 什 么?怎样的区 间才算满足设 定的精确度? 4、 (2, 区间 3)的精确度为 多少? 5、如何将 零点所在的范 围缩小(即如何 将 精 确 度 缩 小)?缩小的依 据是什么? 6、如何利 用今天“猜价 格”——“二分 法”的逼近思想 来 将 缩 小 区 间? 7、近似解 是多少?

系到一起,运用刚 才的游戏的经验, 得到缩小区间的想 法。 3、学生对精确 度的概念可能有所 遗忘。教师可以借 助数轴解释说明精 确度的含义,引导 学生思考什么时候 停止操作。 4、教师通过 “问题 4~6”引导 学生将“二分法” 与“零点存在定理” 相结合得到正确的 新的零点所在的区 间。并确定结束的 时间。 5、学生按照游 戏的方法也就是按 照“二分法”的思 路,不断缩小零点 存在的区间,进行 具体操作, (附 填出 录 1)中的表格。表 格刚开始的前几行 学生可能会比较 慢,也有可能会出 错;通过多次的重 复以及经验的总 结,后面的表格可 以正确的、快速的 回答出来;使得最

何分析问题、 如何 利 用新的 知识 解 决问题; 培养分析 问题、 解决问题的 能力, 以及运用知 识、 驾驭知识的能 力。 3、师生的互 动 有利于 一边 引 导一边总结。 将二 分 法应用 于解 决 实际问题, 即将新 的 知识应 用于 解 决新的问题。 培养 学 生实际 应用 的 能力, 解决问题的 严谨性, 总结知识 的逻辑性。 使得最 后 方法的 总结 能 够顺利进行。 4、有了前面 的 商品的 竞猜 过 程的经历, 学生比 较容易入手, 分析 比较容易到位, 从 而 降低思 维的 难 度。 知识连接:1、 函 数零点 存在 定 理 如果函数
y ? f (x) 在 区 间
[a, b] 上图像是连

续 不断的 一条 曲 线 , 并 且 有

第 66 页 共 72 页

后的“应用二分法 求函数的零点”的 方法的总结更加顺 利。 6、对于“问题 7”学生比较不容易 得到比较简洁的结 论。教师可以进行 解释说明: “由于整 个区间内的数均满 足精确度的条件, 因此区间内的所有 数均可以作为近似 解, 区间端点 a, 但, b 是已知的值, 所以 可以取 a 或 b 作为 近似解。 ,最后得 ” 到方程的近似解 (附录 1 的表格后 面的内容) 。 1、 我们刚才得求解过 程中有哪些过程是一直 重复出现的? 2、我们取 其一段,大家看 如何用数学语 归 纳 言来描述?3、 总 点明求方程的 结 近似解的“二分 法” :对于在区 间(a,b)上连 续不断、且 f (a)·f(b)<0 的函数 y=f , (x) 学生经过老师 “问题 1~2” 的提 示与引导,可以得 到“取区间的中点, 计算函数值,比较 符号,确定新的区 间”这样的相同的 过程。 学生根据“二 分法”的定义进行 归纳总结:运用二 分法求方程的近似 解的步骤 (附录 2) 。 其中步骤① “画

f (a) ? f (b) ? 0 ,

那 么 , 函 数
y ? f (x) 在 区 间

内有零点, 即存在
c ? ( a, b) , 使 得 f (c) ? 0 ,这个 c

也 就 是 方 程
f ( x) ? 0 的根。

2、精确度是 对 同一个 量的 不 同 近似数 的精 确 程度的度量。 一般 是:一个近似数, 四 舍五入 到哪 一 位, 就说这个近似 数精确到哪一 位。]

[设计意图: 1、不断的引导, 将 刚才的 解题 过 程经过 “自然语言 — —数学 语言 — — 去其糟 粕取 其 精 华—— 具体 步 骤”的过程,帮助 学 生学会 归纳 总 结的方法。 2、课间的及 时 总结有 利于 学 生 对当前 所学 的 内容进行升华, 了

第 67 页 共 72 页

通过不断的把 方程的解所在 的区间一分为 二,使区间的两 个端点逐步逼 近近似解,进而 得到近似解的 方法叫二分法. 4、进一步 提出问题:运用 二分法求方程 的近似解的步 骤是什么? 5、运用二 分法的前提是 什么(游戏的开 始时要先做什 么工作)?引例 条件的内涵是 什么? 6、二分法 的 实 质 是 什 么?它有什么 作用? 1.练习: (1) (2)题为 例题仿照题,由 同桌协助完成. 巩 固 (3) (4)考察 提 二分法的含义, 高 由同学独立完 成,可以寻求帮 助.(附录 4) 2.思考:

图或利用函数值的 正负,确定初始区 间(a,b),验证 f(a)f(b)<0” ;学生 很有可能会有遗 漏。此时可以提出 “问题 5” 引导学生 回忆、思考,从而 得到运用二分法的 前提——即步骤 ①。 对于“问题六” 较好的学生才能回 答出来。

解 自己掌 握了 什 么知识, 在后面的 作 题中可 以有 法 可依, 可以提高解 题的正确率, 增强 自信。 3、问题六的 设 计是将 学生 的 思维得到升华, 不 再 停留在 技能 这 一个层次, 而是上 升 为数学 思想 方 法的层次。 知识链接: 1、 运 用二分 法的 前 提 是要先 判断 根 在 某个所 在的 区 间。 2、二分法实 际 上是一 种通 过 缩 小区间 长度 寻 找解的一种方 法.]

练习 1. 1) 2) ( ( 经过同桌两位同学 合作可以顺利完 成。 (3) (4)独立 完成如果有困难的 同学在同伴或老师 的帮助下可以完 成。 练习 2 实际应 用:学有余力的同

[设计意图: 1、不同层次的题 目,层层递进,不 断 提高学 生的 能 力。 不仅巩固新学 的知识, 而且让不 同 层次的 学生 得 到不同的收获; 2、 培养合作、 互助精神;

第 68 页 共 72 页

两道题均为实 际应用题,为学 有余力的同学 提高能力。 (附 录 4) 3. 课后 作业: 习题 3.1A 组 3、 B 组 1、 4; 2。

学与同伴合作探 讨,也可以解决。

3、培养学生 应 用与创 新的 能 力, 利用二分法的 逼 近思想 解决 实 际问题。]

教师通过点名 提问,学生借助教 师的帮助对整节课 请同学们回顾一下 归 本节课的教学过程,你 纳 觉得你已经掌握了哪些 总 知识? 结 进行最后的归纳总 结,得到以下两点 (1)二分法是一种 求一元方程近似解 的通法。 (2)利用 二分法来解一元方 程近似解的操作步 骤(附录 3) 。

[设计意图: 学 生的归 纳总 结 的 能力不 强需 要 不断的培养; 课后 的 总结有 利于 学 生 对整节 课的 内 容进行升华, 了解 自 己掌握 了什 么 知识, 养成良好的 学习习惯, 建立自 信心。]

教学反思

1.本节课有两条线,明线: “从生活实际、从学生熟知的现实生活、从

学生喜爱的游戏——“竞猜商品的价格”入手,引导学生进入深层的思考——如何才 能更快更好的赢得游戏?与学生一道进行新知识的探索过程——二分法的得来; 再将 二分法充分的运用在函数零点的求解上; 最后将二分法求解函数零点的过程程序化” ; 暗线: “生活实际(特殊)——二分法的理论(一般)——二分法的应用(特殊)” ,。 让学生经历知识的形成与应用过程,培养发现问题、提出问题、解决问题的能力,体 现数学的基础性、时代性、典型性和可接受性,体会数学来自生活,应用于生活的最 高境界,感受数学之美。2. 引入课题的方式, (1)从生活中常见现象——“商品价 格的竞猜”引入; (2)开门见山——“继续前面的研究”引入。 (附录 1)解:设 f ( x) ? ln x ? 2 x ? 6 x ? (2,3) ,先取区间的中点,再计算中点的 函数值,接着应用“零点存在定理”确定零点所在的区间,从而缩小精确度,得到下 表: 区 间 中点 中点函数值 精确度

第 69 页 共 72 页

2 2.5 2.5 2.5 2.5 2.53125 2.53125 2.53125 2.53125 2.533203125 2.534179688 2.534667969

3 3 2.75 2.625 2.5625 2.5625 2.546875 2.5390625 2.53515625 2.53515625 2.53515625 2.53515625

2.5 2.75 2.625 2.5625 2.53125 2.546875 2.5390625 2.53515625 2.533203125 2.534179688 2.534667969 2.534912109

-0.083709268 0.511600912 0.215080896 0.065983344 -0.008786748 0.028617117 0.009919918 0.000567772 -0.004109191 -0.001770635 -0.000601413 -1.68157E-05

1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.007813 0.003906 0.001953 0.000977 0.000488

所以,当精确度为 0.01 时,由于|2.539 062 5-2.531 25|=0.0078125<0.01,因此我 们可以将 x=2.25 作为函数 f ( x) ? ln x ? 2 x ? 6 零点的近似值, 也即方程 ln x ? 2 x ? 6 ? 0 根的近似值。 (附录 2)二分法求解方程 f(x)=0[或 g(x)= h(x)]近似解的基本步骤: ① 画图或利用函数值的正负,确定初始区间(a,b),验证 f(a)f(b)<0; a?b ); ② 求区间(a,b)的中点 x 1 ( x1 ? 2 ③ 计算 f(x1):若 f(x1)=0,则 x1 就是函数 f(x)的零点,x1 就是 f(x)=0 的根,计 算终止; 若 f(a) f(x1) ? 0,则选择区间(a, x1) ; 若 f(a) f(x1) ? 0,则选择区间(x1,b) ; ④ 循环操作②、③,直到当区间的精确度达到事先指定的精确度 求精确到

? 两端点精确到同一个近似值时才终止计算) 。

? (若是要

(附录 3)二分法的过程如下图:

输入ε ,x1,x2

x?

1 ( x1 ? x 2 ) , y ? f ( x) 2


第 70 页 共 y=0? 72 页

否 否 D<ε ? 是

(附录 4) 1.练习: (1)应用计算器,求方程 x +3x-1=0 的一个正的近似解。 (2)应用计算器,求方程 2 x ? x ? 4 的近似解。 (3)用二分法判断方程 2 x ? x 2 的根的个数( A. 1 B. 2 C. 3 D. 4 (4)方程 lg( x ? 4) ? 10x 的根的情况 ( ) A.仅有一根 B.有一正根一负根 C.有两负根 D.无实根 2.思考:(1)从上海到美国旧金山的海底电缆有 15 个接点,现在某接点发生故障, 需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为几个? (2)一天,我们泉州七中校区与现代中学(分校)校区的电缆线路出了故障, (相 距大约 10km)电工是怎样检测的呢? 3. 课后作业:习题 3.1A 组 3、4;B 组 1、2。 )
3

泉州七中冯红果

点评:
一个有经验的的教师,应该对挖掘课本知识是非常重视的,挖掘课 本知识的根本目的在于让学生学会探索性学习,培养学生的探索能力和 创新精神。冯老师本节的教学设计,能够从知识结构、学生的认知结构 展开,充分挖掘和体现了本课内容所蕴含的知识技能、思想方法、数学 应用、数学文化的教育价值及学习研究解决问题的策略,立足“方程与 函数的关系” ,渗透了“算法”和“逼进”的数学思想,程序化的解决问

第 71 页 共 72 页

题的策略。从生活游戏“猜价格”引入贴切,通过游戏直观感受二分法 的思想,开门见山,延续上一节课的内容继续深入的研究,将本节的知 识建构在旧知识的体系中。设计中不管是情境的创设,还是教师的引导 和数学活动的设臵,都能从学生的实际出发,让学生经历了直观感知、 观察发现、抽象概括、符号表示、运算求解、数据处理、反思建构等思 维的全过程。在设计中还注意到数学的应用意识,思考题中把“二分法” 应用到电缆线故障点的检修,提升了数学方法的重要性和普遍性,体现 了数学与生活的联系。 纵观本节的整体设计,内容安排简洁精致有层次,教法选择合理丰 富有重点,过程设计紧凑有序可操作。

第 72 页 共 72 页


高中数学优秀教学设计案例

高中数学优秀教学设计案例_数学_高中教育_教育专区。高中数学优秀教学设计案例 高中数学教学设计大赛 获奖作品汇编 (上 部) 第 1 页共 208 页 目 录 1、集合与...

高中数学课堂教学设计案例一则

高中数学课堂教学设计案例一则 默认分类 2009-10-11 07:29 阅读 69 评论 0 字号: 大中小 新课程标准下的高中数学课堂教学设计案例一则 一、 课堂教学改革势在...

高中数学教学设计模版及案例

高中数学教学设计模板及案例 【中学数学教案】 《必修 5》1.1.2 余弦定理(第一课时)河北师大附中 刘建良 1 高中数学教学设计模板及案例 教学课题 1.知识与技能...

高中数学在教学设计大赛上获奖作品展示

高中数学教学设计大赛上获奖作品展示_教学案例/设计_教学研究_教育专区。教学设计获奖作品选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片...

高中数学教学设计大赛获奖作品汇编(中册,共10课,含点评)

高中数学教学案例设计汇编(中部) 10、直线与平面平行的判定一、教学内容分析: 本节教材选自人教 A 版数学必修②第二章第一节课,本节内容在立几学习中起着 承...

新课程高中数学优秀教学设计与案例高中数学优秀教学设计与案例

新课程高中数学优秀教学设计案例高中数学优秀教学设计案例 10.直线与平面平行的性质 1.教学目的 (1)通过教师的适当引导和学生的自主学习,使学生由直观感知、...

新课程高中数学优秀教学设计与案例高中数学优秀教学设计与案例

新课程高中数学优秀教学设计案例高中数学优秀教学设计案例 10.直线与平面平行的性质 1.教学目的 (1)通过教师的适当引导和学生的自主学习,使学生由直观感知、...

高中数学教学案例

高中数学教学案例_数学_高中教育_教育专区。课题 : § 2.1.2 指数函数及其性质一、教学设计思路: 1、函数及其图像在高中数学中占有重要的位置,如何突破这个 既...

高中数学教学案例设计汇编

高中数学教学案例设计汇编_数学_高中教育_教育专区。高中数学教学案例设计汇编(下部...水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清 创设 情景 引...

高中数学教学设计模版

高中数学教学设计模版_教学案例/设计_教学研究_教育专区。宣城市 2010-2011 学年 度中小学幼儿园优秀教 学设计、教学课例和教 育案例评选参评案例 课题 : § 2...