nbhkdz.com冰点文库

2015高中数学 1.5-1.6积分预习 新人教A版选修2-2

时间:2016-03-13


积分预习
定积分的定义 【课标转述】 通过实例,从问题情景中了解定积分的实际背景,初步了解定积分的概念。 【学习目标】 1 通 过 §1.5.1 和§1.5.2 的求 曲 边 梯 形 的 面 积 和 变 速 直 线 运 动 的 路 程 , 认 识 定 积分的背景; 2 借 助 于 几 何 直 观 的 定 积 分 的 基 本 思 想 ,体 会 感 知 定 积 分 的 概

念 ,能 用 定 积 分 法求简单的定积分; 3 正确认识定积分的几何意义。 【学习过程】 一.知识回顾: 1. 回忆前面曲边图形面积, 变速运动的路程, 变力做功等问题的解决方法, 解决步骤: 分割→以直代曲→求 和→取极限(逼近) 2.结 合 §1.5.1 和§1.5.2 的求 曲 边 梯 形 的 面 积 和 变 速 直 线 运 动 的 路 程 对这四个 步骤再以分析、理解、归纳,找出共同点: 二.新课探究 1、自学 P45—P47 完成下面的 2—4 内容 2.定积分的概念: 一 般 地 , 设 函 数

f ( x) 在 区 间 [a b,

上 ] 连 续 , 用 分 点

a ? x0 ? x1 ? x2 ?? ? xi ?1 ? xi ? ? ? xn ? b
将区间 [ a, b] 等分成 n 个小区间,每个小区间长度为 ?x ( ?x ? 间 式:

b?a ),在每个小区 n
, 作 和

? xi?1 , xi ?









?i ?i ? 1,2,?, n?

,如果 ?x 无限接近于 0 (亦

即 n ??? ) 时, 上述和式 Sn 无限趋近于常数 S , 那么称该常数 S 为函数 f ( x ) 在区间 [ a, b] 上的定积分。记为: , x 叫做 , [ a, b] 为 。 其 中 f ( x) 叫 做 , b 为积分上

1

限, a 为 说明:(1)定积分 为

,f(x)dx 为



?

b

a

f ( x)dx 是一个常数,即 Sn 无限趋近的常数 S ( n ??? 时)称

?

b

a

f ( x)dx ,而不是 Sn .
(2)用定义求定积分的一般 方法是:①分割: n 等分区间 ?a , b? ;②近似代替:

取点 ?i ?? xi ?1 , xi ? ;③求和:

n b b?a b?a ;④取极限: f ( ? ) f ( x ) dx ? lim f ? ?i ? ? ? i ? a n ?? n n i ?1 i ?1 n

(3)曲边图形面积: S ?

? f ? x ?dx ;变速运动路程 S ? ?
a

b

t2

t1

v(t )dt 。

3.定积分的几何意义 (根据右图阐述 ):

4.定积分的性质 性质 1: (定积分的线性性质)

性质 2:

(定积分的线 性性质)

性质 3 性)

(定积分对积分区间的可加








b


b

广



?

b

a

[ f1 x ? f x ? ( ?? 2 f m x dx ) ? ? f x dx ? ? ( f x dx ? ? ) 1 ? ? fm x
a a a

(

2

)

b

②推广: 三.典例展示 例1

?

b

a

f ( x)dx ? ? f ( x)dx ? ? f ( x)dx ? ? ? ? f ( x)dx
a c1 ck

c1

c2

b

计算定积分

?

2

1

( x ? 1)dx

y

o

1

2

2

x

思考:若改为计算定积分

?

2

?2

( x ? 1)dx 呢?

例2

利用定积分的定义,计算

? (x
2

4

3

? x)dx 的值。

四.课堂达标 计算下列定积分 1.

?

5

0

(2 x ? 4)dx

2、

?

1

?1

x dx

3

3. (2 x ? x) dx
2 2

?

5

微积分基本定理 【课标转述】 通过实例,直观了解微积分基本定理的含义。 【学习目标】 1、 通 过 实 例 , 直 观 了 解 微 积 分 基 本 定 理 的 含 义 , 会 用 牛 顿 -莱 布 尼 兹 公 式 求 简单的定积分 2、 通 过 实 例 体 会 用 微 积 分 基 本 定 理 求 定 积 分 的 方 法 【学习过程】 一、复习: 定积分的概念:

4

用定义计算定积分方法步骤: 二、新课探究: 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般 方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动, 在时刻 t 时物体所在位置为 S(t),速 度为 v(t( ) v(t ) ? o ) , 则物体在时间间隔 [T1 , T2 ] 内经过的路程可用速度函数表示为

?

T2

T1

v(t )dt 。

另一方面,这段路程还可以通过位置函数 S(t)在 [T1 , T2 ] 上的增量 S (T1 ) ? S (T2 ) 来表 达,即

?

T2

T1

v(t )dt = S (T1 ) ? S (T2 )

而 S ?(t ) ? v(t ) 。 对于一般函数 f ( x ) ,设 F ?( x) ? f ( x) ,是否也有

?

b

a

f ( x)dx ? F (b) ? F (a)

若上 式成立,我 们就找到了 用 f ( x ) 的原 函数 (即满足 F ?( x) ? f ( x)) 的数值 差

F (b) ? F (a) 来计算 f ( x) 在 [a, b] 上的定积 分的方法。
注:1、定理 如果函数 F ( x) 是 [ a, b] 上的连续函数 f ( x ) 的任意一个原函数,则

?

b

a

f ( x)dx ? F (b) ? F (a)

F (b) ? F (a) ,即 2、为了方便起见,还常用 F ( x) |b a 表示

5

?

b

a

f ( x)dx ? F ( x) |b a ? F (b) ? F (a)
该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的

一般方法, 把求定积分的问题, 转化成求原函数的问题, 是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系, 同时也提供计算定积分的一种有效方法, 为后 面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅 如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1 (1) 计算下列定积分:

?

2

1

3 1 1 dx ; (2) ? (2 x ? 2 ) dx 。 1 x x

解:(1) (2) 例2 计算下列定积分:
2? 2?

?

?

0

sin xdx, ? sin xdx, ? sin xdx 。
?
0

由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。 解:

可以发现,定积分的值可能取正值也可能取负值,还可能是 0: ( l )当对应的曲边梯形位于 x 轴上方时(图 1 ) ,定积分的值取正值,且等于曲边 梯形的面积;

图1

(2)当对应的曲边梯形位于 x 轴下方时(图 2) ,定积分的值取负值,且等于曲边 梯 形的面积的相反数;

6

图2

( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积 分的值为 0(图 3) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形 面积.

[:] 图3 例 3 汽车以每小时 32 公里速度行驶,需要减速停车。设汽车以等减速度 a =1.8 米/秒
2

刹车,问从开始刹车到停车,汽车走了多少距离?

7


人教A版高中数学教材目录

人教A版高中数学教材目录_高一数学_数学_高中教育_...选修 2-2 第二章 随机变量及其分布 第一章 导数...1.5积分的概念 3.1 1.6积分基本定理 1.7 ...

2016年春新人教A版高三选修2-2 数学复习测试题:1.5定积...

2016年春新人教A版高三选修2-2 数学复习测试题:1.5积分的概念1.6积分基本定理 Word版含答案_数学_高中教育_教育专区。§1.5 §1.6 学习目标: 定积分的概念...

人教版高中数学教材最新目录

人教版高中数学教材最新目录_数学_高中教育_教育专区...选修 2-2: 第一章 导数及其应用 1.1 变化率与...1.5积分的概念 1.6积分基本定理 1.7 定...

人教版高中数学A版目录

新课标高中数学人教版 A 版 必修 1 第一章 集合...3.2 立体几何中的向量方法 选修 2-2 第一章 ...1.5积分的概念 1.6积分基本定理 1.7 定...

人教版高中数学教材最新目录

3.2 立体几何中的向量方法 选修 2-2: 第一章 1.1 导数及其应用 1.5 1.6 1.7 定积分的概念 微积分基本定理 定积分的简单应用 变化率与导数 1.2 导数的...

高中数学人教A版必修4目录

高中数学人教A版必修4目录_数学_高中教育_教育专区。...1.5 函数 y=Asin(ω x+φ ) 的图象 1.5 函数 ...(2 课时) 1.6 三角函数模型的简单应用 1.6 三角...

湖南新人教A版高中数学教材目录汇编

湖南新人教A版高中数学教材目录汇编_数学_高中教育_...选修 1-2 第一章 统计案例 1.1 1.2 回归分析...1.5 1.6 1.7 变化率与导数 导数的计算 导数在...

人教版高中数学目录

1.2 基本算法语句 1.5 函数 y=Asin(ωx+ψ) 1.3 算法案例 1.6 三角函数...走进微积分 选修 1-2 第一章 统计案例 2.1 合情推理与演绎证明 阅读与思考...

2015.4.29安徽初中数学教材目录高中数学教材目录

2015.4.29安徽初中数学教材目录高中数学教材目录_...1.5 函数 y=Asin(ω x+ψ )的图象 1.6 三角...(理科)人教 A 版数学 高二下 选修 2-2 第一章...

人教版高中数学A版目录

新课标高中数学人教版 A 版目录 必修 1 第一章 ...3.2 立体几何中的向量方法 选修 2-2(理科)第一...1.5积分的概念 1.6积分基本定理 1.7 定...