nbhkdz.com冰点文库

高中数学必修1.2.4.5知识点

时间:2013-08-26


高一数学必修 1 知识网络
集合

? ()元素与集合的关系:属于(?)和不属于(?) ?1 ? ? ? ?集合与元素 (2)集合中元素的特性:确定性、互异性、无序性 ? ? (3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 ? ? ? (4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法 ? ? ? ? ?子集:若x ? A ? x ? B,则A ? B,即A是B的子集。 ? ? ? ? ?1、若集合A中有n个元素,则集合A的子集有2n 个,真子集有(2n -1)个。 ? ? ? ? ? ? ? ?2、任何一个集合是它本身的子集,即 A ? A ? ? 注? ? ? ?关系 ? ? ?3、对于集合A, B, C , 如果A ? B,且B ? C , 那么A ? C. ? ? ? ?4、空集是任何集合的(真)子集。 ? ? ? ? ? ?真子集:若A ? B且A ? B ? (即至少存在x0 ? B但x0 ? A),则A是B的真子集。 集合 ? ? ? ? ? ?集合相等:A ? B且A ? B ? A ? B ? ? ? ? ? ?定义:A ? B ? ? x / x ? A且x ? B? ?集合与集合 ? ? ?交集 ? ? ? ?性质:A ? A ? A,A ? ? ? ?,A ? B ? B ? A,A ? B ? A, A ? B ? B,A ? B ? A ? B ? A ? ? ? ? ? ? ? ? ?并集 ?定义:A ? B ? ? x / x ? A或x ? B? ? ? ? ? ? ? ?性质:A ? A ? A,A ? ? ? A,A ? B ? B ? A,A ? B ? A,A ? B ? B,A ? B ? A ? B ? B ? ? ? ?运算 ? ? ? Card ( A ? B) ? Card ( A) ? Card ( B) - Card ( A ? B) ? ? ? ? ?定义:CU A ? ? x / x ? U 且x ? A? ? A ? ? ? ? ? ?补集 ?性质: U A) ? A ? ?, U A) ? A ? U,CU (CU A) ? A,CU ( A ? B) ? (CU A) ? (CU B), ? (C (C ? ? ? ? ? CU ( A ? B) ? (CU A) ? (CU B) ? ? ? ? ? ?

函数

1

?映射定义:设A,B是两个非空的集合,如果按某一个确定的对应关系,使对于集合A中的任意一个元素x, 在集合B中都有唯一确定的元素y 与之对应,那么就称对应f :? B为从集合A到集合B的一个映射 ? ? 传统定义:如果在某变化中有两个变量x , y , 并且对于x在某个范围内的每一个确定的值, ? 按照某个对应关系f , y 都有唯一确定的值和它对应。那么y 就是x的函数。记作y ? f ( x ). ?定义 ? ? 近代定义:函数是从一个数集到另一个数集的映射。 ? 定义域 ?函数及其表示 ?函数的三要素 ?值域 ? ? ? ?对应法则 ? ? ?解析法 ? ? ?函数的表示方法 ?列表法 ? ? ?图象法 ? ? ?传统定义:在区间? a ,b ?上,若a ? x1? x2 ?b ,如f ( x1 )? f ( x2 ),则f ( x ) 在? a ,b ?上递增, a ,b ?是 ? ? ? ? 递增区间;如f ( x1 )? f ( x2 ),则f ( x ) 在? a ,b ?上递减, a ,b ?是的递减区间。 ? ? ? ?单调性?导数定义:在区间 a ,b 上,若f ( x )?0,则f ( x ) 在 a ,b 上递增, a ,b 是递增区间;如f ( x )?0 ? ? ? ? ? ? ? ? 则f ( x ) 在? a ,b ?上递减, a ,b ?是的递减区间。 ? ? ? ? ? ? ? ? ?最大值:设函数y ? f ( x )的定义域为I,如果存在实数M 满足:(1)对于任意的x?I,都有f ( x )? M ; ? 函数 ? (2)存在x0?I,使得f ( x0 )? M。则称M 是函数y ? f ( x )的最大值 函数的基本性质 ?最值? ?最小值:设函数y ? f ( x )的定义域为I,如果存在实数N 满足:(1)对于任意的x?I,都有f ( x )? N; ? ? ? (2)存在x0?I,使得f ( x0 )? N。则称N 是函数y ? f ( x )的最小值 ? ? ? ?(1) f ( ? x ) ?? f ( x ), x?定义域D,则f ( x ) 叫做奇函数,其图象关于原点对称。 ? ? ?奇偶性?( 2 ) f ( ? x ) ? f ( x ), x?定义域D,则f ( x ) 叫做偶函数,其图象关于y轴对称。 ? ? ? 奇偶函数的定义域关于原点对称 ? ?周期性:在函数f ( x )的定义域上恒有f ( x ?T )? f ( x )( T ?0的常数 ) 则f ( x ) 叫做周期函数,T 为周期; ? ? T的最小正值叫做f ( x )的最小正周期,简称周期 ? ? ? (1)描点连线法:列表、描点、连线 ? ? ? ?向左平移? 个单位:y1? y , x1?a ? x? y ? f ( x ? a ) ? ? ? ?向右平移a个单位:y1? y , x1? a ? x? y ? f ( x ?a ) 平移变换? ? ? ? ? ?向上平移b个单位:x1? x , y1?b ? y? y ?b ? f ( x ) ? ? ? ?向下平移b个单位:x1? x , y1?b ? y ? y ?b ? f ( x ) ? ? ?横坐标变换:把各点的横坐标x1缩短(当w?1时)或伸长(当 0? w?1时) ? ? ? ? 到原来的1 / w倍(纵坐标不变),即x1? wx? y ? f ( wx ) ? ?伸缩变换?纵坐标变换:把各点的纵坐标y 伸长(A?1) 或缩短(0? A?1) 到原来的A倍 1 ? ? ? ?函数图象的画法 ?? (横坐标不变), 即y1? y / A? y ? f ( x ) ? ? ? (2)变换法? ? ? ? ?xy? x1?2 x0 x1?2 x0 ?x ?关于点 ( x0 , y0 ) 对称: ? y1? 2 y0 ?? y1? 2 y0 ? y ?2 y0 ? y ? f ( 2 x0 ? x ) ? ? ? ? ? ?关于直线x ? x0对称: ? x1?2 x0 ??x1?2 x0 ? x? y ? f ( 2 x0 ? x ) ? ? ? ?xy? y1 y1? y ?对称变换? ? ? ? ? ?关于直线y ? y0对称: ? x1 ? ?xy1? y?2 y0??xy11??x2 y0 ? y?2 y0 ? y? f ( x ) ? ? ? ? ? ? ? ? ?xy?x1 ?1 ? ?关于直线y ? x对称: ? y1? y ? f ( x ) ? ? ? ? ? ? ? ? ?

?

附: 一、函数的定义域的常用求法: 1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于 零; 指数函数和对数函数的底数大于零且不等于 1; 三角函数正切函数 y ? tan x 中 4、 5、

x ? k? ?

?
2

(k ? Z ) ;余切函数 y ? cot x 中;6、如果函数是由实际意义确定的解析式,

2

应依据自变量的实际意义确定其取值范围。 二、函数的解析式的常用求法: 1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 三、函数的值域的常用求法: 1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、 直接法 四、函数的最值的常用求法: 1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法 五、函数单调性的常用结论: 1、若 f ( x), g ( x) 均为某区间上的增(减)函数,则 f ( x) ? g ( x) 在这个区间上也为 增(减)函数 2、若 f ( x ) 为增(减)函数,则 ? f ( x) 为减(增)函数 3、若 f ( x ) 与 g ( x) 的单调性相同,则 y ? f [ g ( x)] 是增函数;若 f ( x ) 与 g ( x) 的单 调性不同,则 y ? f [ g ( x)] 是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作 函数图象。 六、函数奇偶性的常用结论: 1、如果一个奇函数在 x ? 0 处有定义,则 f (0) ? 0 ,如果一个函数 y ? f ( x) 既是 奇函数又是偶函数,则 f ( x) ? 0 (反之不成立) 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数 y ? f (u ) 和 u ? g ( x) 复合而成的函数,只要其中有一个是偶函数,那 么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。 5、若函数 f ( x ) 的定义域关于原点对称,则 f ( x ) 可以表示为

1 1 f ( x) ? [ f ( x) ? f (? x)] ? [ f ( x) ? f (? x)] ,该式的特点是:右端为一个奇函数和一个偶 2 2
函数的和。函数周期性分类解析 一.定义:若 T 为非零常数,对于定义域内的任一 x,使 f ( x ? T ) ? f ( x) 恒成立 则 f(x)叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、 f ? x ? ? f ? x ? a ? ,则 y ? f ? x ? 是以 T ? a 为周期的周期函数; 2、 若函数 y=f(x)满足 f(x+a)=-f(x)(a>0),则 f(x)为周期函数且 2a 是它的一个周期。 3、 若函数 f ? x ? a ? ? f ? x ? a ? ,则 f ?x ? 是以 T ? 2 a 为周期的周期函数
3

4、 y=f(x)满足 f(x+a)=

1 (a>0),则 f(x)为周期函数且 2a 是它的一个周期。 f ?x ?
1 (a>0),则 f(x)为周期函数且 2a 是它的一个周期。 f ?x ?

5、若函数 y=f(x)满足 f(x+a)= ?

6、 f ( x ? a) ?

1 ? f ( x) ,则 f ?x ? 是以 T ? 2 a 为周期的周期函数. 1 ? f ( x) 1 ? f ( x) ,则 f ?x ? 是以 T ? 4 a 为周期的周期函数. 1 ? f ( x) 1 ? f ( x) (x∈R,a>0),则 f(x)为周期函数且 4a 是它的一个周 1 ? f ( x)
函数对称性性分类解析

7、 f ( x ? a ) ? ?

8、 若函数 y=f(x)满足 f(x+a)= 期。 1.函数的轴对称:

定理 1:如果函数 y ? f ( x) 满足 f (a ? x) ? f (a ? x) ,则函数 y ? f ( x) 的图象关于直 线 x ? a 对称. 定理 2: 如果函数 y ? f ( x) 满足 f ? x ? ? f ? 2a ? x ? , 则函数 y ? f ( x) 的图象关于直线

x ? a 对称.
定理 3:如果函数 y ? f ( x) 满足 f ? ? x ? ? f ? 2a ? x ? ,则函数 y ? f ( x) 的图象关于直 线 x ? a 对称. 定理 4:如果函数 y ? f ( x) 满足 f (a ? x) ? f (b ? x) ,则函数 y ? f ( x) 的图象关于直 线x?

a?b 对称. 2

定理 5:如果函数 y ? f ( x) 满足 f ( x) ? f (? x) ,则函数 y ? f ( x) 的图象关于直线

x ? 0 (y 轴)对称.
2.函数的点对称: 定理 1:如果函数 y ? f ( x) 满足 f (a ? x) ? f (a ? x) ? 2b ,则函数 y ? f ( x) 的图象关于点

( a, b) 对称.

4

定理 2:如果函数 y ? f ( x) 满足 f ? x ? ? f ? 2a ? x ? ? 2b ,则函数 y ? f ( x) 的图象关于点

( a, b) 对称.
定理 3:如果函数 y ? f ( x) 满足 f ? ? x ? ? f ? 2a ? x ? ? 2b ,则函数 y ? f ( x) 的图象关于点

( a, b) 对称.
定理 4:如果函数 y ? f ( x) 满足 f (a ? x) ? f ( a ? x) ? 0 ,则函数 y ? f ( x) 的图象关于点

( a, 0) 对称.
定理 5: 如果函数 y ? f ( x) 满足 f ( x) ? f (? x) ? 0 , 则函数 y ? f ( x) 的图象关于原点 (0, 0) 对称. 函数的对称性与周期性的联系 (1) 若函数 y=f(x)在 R 上图象关于 x=a 与 x=b(b≠a)对称,则 f(x)为 R 上的周期 函数。 (2) 若函数 y=f(x)在 R 上图象关于 x=a 与(b,c) (b≠a)对称,则 f(x)为 R 上的 周期函数。

5

? ? ?零点:对于函数y ? f(x), 我们把使f ( x ) ? 0的实数x叫做函数y ? f ( x )的零点。 ? ? ?定理:如果函数y ? f ( x ) 在区间[ a , b ]上的图象是连续不断的一条曲线,并且有f ( a ) ? f ( b ) ? 0, ? ?零点与根的关系 ? 那么,函数y ? f ( x ) 在区间[ a , b ]内有零点。即存在c ? ( a , b ), 使得f ( c ) ? 0, 这个c也是方 ? ? ? 程f ( x ) ? 0的根。(反之不成立) ? ? ?关系:方程f ( x ) ? 0 有实数根 ? 函数y ? f ( x ) 有零点 ? 函数y ? f ( x )的图象与x轴有交点 ? ? ?(1) 确定区间[ a , b ], 验证f ( a ) ? f ( b ) ? 0, 给定精确度? ; ?函数与方程 ? ?( 2) 求区间( a , b )的中点c ; ? ? 函数的应用 ? ?(3) 计算f ( c ); ?二分法求方程的近似解 ? ①若f ( c ) ? 0, 则c就是函数的零点; ? ? ? c ? ? ②若f ( a ) ? f ( c ) ? 0, 则令b ? (此时零点x0 ? ( a , b )); ? ? c ? ③若f ( c ) ? f ( b ) ? 0, 则令a ? (此时零点x 0 ? ( c , b )); ? ? ? ?( 4) 判断是否达到精确度? :即若 a - b ? ? , 则得到零点的近似值a ( 或b ); 否则重复 2 ? 4。 ? ? ?几类不同的增长函数模型 ?函数模型及其应用 ?用已知函数模型解决问题 ? ?建立实际问题的函数模型 ?

m n ? ? ?根式: a , n为根指数,a为被开方数 ? n m ? ? ? an ? ? ? a ? ? ? ?分数指数幂 ? ? ? ? ? a r a s ? a r ? s ( a ? 0, r , s ? Q ) 指数的运算 ? ? ? ? r s ? ?指数函数 ? rs ? ?性质 ?( a ) ? a ( a ? 0, r , s ? Q ) ? ? ?( ab) r ? a r b s ( a ? 0, b ? 0, r ? Q ) ? ? ? ? ? ? ? x ? ?指数函数 ?定义:一般地把函数y ? a ( a ? 0且a ? 1)叫做指数函数。 ? ? ? ? ?性质:见表1 ? ? ? ?对数:x ? log a N , a为底数,N 为真数 ? ? ? ? ?log a ( M ? N ) ? log a M ? log a N ; ? ? ? 基本初等函数 ? ? ? ? ? ?log a M ? log a M ? log a N ; ? ? ? N ?对数的运算 ?性质 ? ? ? ? ? log a M n ? n log a M ; ( a ? 0, a ? 1, M ? 0, N ? 0) 对数函数 ? ? ? ? ? ? ? log c b ? log ( a, c ? 0且a, c ? 1, b ? ? ?换底公式: a b ? ? ? log c a ? ? ? ? ? ? ?对数函数 ?定义:一般地把函数y ? log a x ( a ? 0且a ? 1)叫做对数函 ? ? ? ? ?性质:见表1 ? ? ? ? ? ?幂函数 ?定义:一般地,函数y ? x 叫做幂函数,x是自变量,? 是常数。 ? ? ?性质:见表2 ?

表 1 定 义 域

指数函数

y ? a ? a ? 0, a ? 1?
x

对数数函数

y ? loga x ? a ? 0, a ? 1?
x?? 0, ???

x?R

6

值 域

y ? ? 0, ???

y?R

图 象

过定点 (0,1) 减函数(0<a<1) 增函数(a>1)

过定点 (1, 0) 减函数(0<a<1) 增函数(a>1)

x ? (??,0)时,y ? (1, ??) (??,0)时,y ? (0,1) x ? (0,1)时,y ? (0, ??) x ? (0,1)时,y ? (??,0) x?
) x x ? (0, ??)时,y ? (0,1)x ? (0, ??)时,y ? (1, ??x ? (1, ??)时,y ? (??,0)? (1, ??)时,y ? (0, ??)

性 质

a?b
表2

a?b

a?b

a?b

幂函数 y ? x? (? ? R)

??

p q

? ?0

0 ?? ?1

? ?1

? ?1

p为奇数 q为奇数
奇函数

p为奇数 q为偶数

p为偶数 q为奇数
偶函数

第一象限 性质

减函数

增函数

过定点

(0, 1)

7

导 数 知识要点

导数的概念

导数的几何意义、物理意义

常见函数的导数

导 数

导数的运算 导数的运算法则

函数的单调性

导数的应用

函数的极值

函数的最值
1. 导数(导函数的简称)的定义:设 x 0 是函数 y ? f (x) 定义域的一点,如果自变量 x 在 x 0 处 有 增 量 ?x , 则 函 数 值 y 也 引 起 相 应 的 增 量 ?y ? f ( x 0 ? ?x) ? f ( x 0 ) ; 比 值
?y f ( x0 ? ?x) ? f ( x0 ) 称为函数 y ? f (x) 在点 x 0 到 x 0 ? ?x 之间的平均变化率;如果极限 ? ?x ?x f ( x0 ? ?x) ? f ( x0 ) ?y 存在,则称函数 y ? f (x) 在点 x 0 处可导,并把这个极限叫做 ? lim ?x?0 ?x ?x?0 ?x lim
y ? f (x) 在 x 0 处的导数, 记作 f ' ( x0 ) 或 y ' | x? x0 , f ' ( x0 ) = lim 即

f ( x0 ? ?x) ? f ( x0 ) ?y . ? lim ?x?0 ?x ?x?0 ?x

注:① ?x 是增量,我们也称为“改变量”,因为 ?x 可正,可负,但不为零. ②以知函数 y ? f (x) 定义域为 A , y ? f ' ( x) 的定义域为 B ,则 A 与 B 关系为 A ? B . 2. 函数 y ? f (x) 在点 x 0 处连续与点 x 0 处可导的关系: ⑴函数 y ? f (x) 在点 x 0 处连续是 y ? f (x) 在点 x 0 处可导的必要不充分条件. 可以证明,如果 y ? f (x) 在点 x 0 处可导,那么 y ? f (x) 点 x 0 处连续. 事实上,令 x ? x 0 ? ?x ,则 x ? x 0 相当于 ?x ? 0 .
8

于是 lim f ( x) ? lim f ( x 0 ? ?x) ? lim [ f ( x ? x 0 ) ? f ( x 0 ) ? f ( x 0 )]
x ? x0 ?x ?0 ?x ? 0

? lim[
?x?0

f ( x0 ? ?x) ? f ( x0 ) f ( x0 ? ?x) ? f ( x0 ) ? ?x ? f ( x0 )] ? lim ? lim ? lim f ( x0 ) ? f ' ( x0 ) ? 0 ? f ( x0 ) ? f ( x0 ). ?x?0 ?x?0 ?x?0 ?x ?x

⑵如果 y ? f (x) 点 x 0 处连续,那么 y ? f (x) 在点 x 0 处可导,是不成立的. 例: f ( x) ?| x | 在点 x 0 ? 0 处连续,但在点 x 0 ? 0 处不可导,因为
?y ?y ?y 不存在. ? 1 ;当 ?x <0 时, ? ?1 ,故 lim ?x ?0 ?x ?x ?x ?y | ?x | ,当 ?x >0 时, ? ?x ?x

注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数 y ? f (x) 在点 x 0 处的导数的几何意义就是曲线 y ? f (x) 在点 ( x 0 , f ( x)) 处的切线的斜率, 也 就 是 说 , 曲 线 y ? f (x) 在 点 P ( x 0 , f ( x)) 处 的 切 线 的 斜 率 是 f ' ( x0 ) , 切 线 方 程 为
y ? y 0 ? f ' ( x)( x ? x0 ).

4. 求导数的四则运算法则:
(u ? v) ' ? u ' ? v ' ? y ? f1 ( x) ? f 2 ( x) ? ... ? f n ( x) ? y ' ? f1' ( x) ? f 2' ( x) ? ... ? f n' ( x)

(uv) ' ? vu ' ? v ' u ? (cv) ' ? c ' v ? cv ' ? cv ' ( c 为常数)
vu ' ? v ' u ?u? (v ? 0) ? ? ? v2 ?v?
'

注:① u, v 必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导. 例如:设 f ( x) ? 2 s i nx ?
f ( x) ? g ( x) ?
sin x ? cos x 在 x ? 0 处均可导.

2 2 , g ( x) ? cos x ? ,则 f ( x), g ( x) 在 x ? 0 处均不可导,但它们和 x x

5. 复合函数的求导法则: f x ' (? ( x)) ? f ' (u)? ' ( x) 或 y ' x ? y ' u ? u ' x 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法: 设函数 y ? f (x) 在某个区间内可导, 如果 f ' ( x) >0, y ? f (x) 为 则

9

增函数;如果 f ' ( x) <0,则 y ? f (x) 为减函数. ⑵常数的判定方法; 如果函数 y ? f (x) 在区间 I 内恒有 f ' ( x) =0,则 y ? f (x) 为常数. 注:① f ( x) ? 0 是 f(x)递增的充分条件,但不是必要条件,如 y ? 2x 3 在 (??,??) 上并不是 都有 f ( x) ? 0 ,有一个点例外即 x=0 时 f(x) = 0,同样 f ( x) ? 0 是 f(x)递减的充分非必 要条件. ②一般地,如果 f(x)在某区间内有限个点处为零,在其余各点均为正(或负) ,那么 f(x) 在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法: (极值是在 x 0 附近所有的点,都有 f (x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值,极小值同理) 当函数 f (x) 在点 x 0 处连续时, ①如果在 x 0 附近的左侧 f ' ( x) >0,右侧 f ' ( x) <0,那么 f ( x 0 ) 是极大值; ②如果在 x 0 附近的左侧 f ' ( x) <0,右侧 f ' ( x) >0,那么 f ( x 0 ) 是极小值. 也就是说 x 0 是极值点的充分条件是 x 0 点两侧导数异号,而不是 f ' ( x) =0 . 此外,函数不 可导的点也可能是函数的极值点 . 当然,极值是一个局部概念,极值点的大小关系是不确 定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①:若点 x 0 是可导函数 f (x) 的极值点, f ' ( x) =0. 但反过来不一定成立. 对于可导函数, 则 其一点 x 0 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数 y ? f ( x) ? x 3 , x ? 0 使 f ' ( x) =0,但 x ? 0 不是极值点. ②例如:函数 y ? f ( x) ?| x | ,在点 x ? 0 处不可导,但点 x ? 0 是函数的极小值点. 8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进 行比较. 注:函数的极值点一定有意义. 9. 几种常见的函数导数: I. C ' ? 0 ( C 为常数)
② ①

(sin x) ' ? cos x

(arcsin x) ' ?

1 1? x 2

10

( x n ) ' ? nxn?1 ( n? R )

(cos x) ' ? ? sin x

(arccos x) ' ? ?

1 1? x 2

II. (ln x) ' ?

1 x

(loga x) ' ?

1 loga e x

(arctan x) ' ?

1 x ?1
2

(e x ) ' ? e x
III. 求导的常见方法: ①常用结论: (ln | x |) ' ?
1 . x

(a x ) ' ? a x ln a

(arccot x) ' ? ?

1 x ?1
2

②形如 y ? ( x ? a1 )( x ? a 2 )...( x ? a n ) 或 y ? 求代数和形式.

( x ? a1 )( x ? a 2 )...( x ? a n ) 两边同取自然对数,可转化 ( x ? b1 )( x ? b2 )...( x ? bn )

③无理函数或形如 y ? x x 这类函数,如 y ? x x 取自然对数之后可变形为 ln y ? x ln x ,对两边

求导可得

y' 1 ? ln x ? x ? ? y ' ? y ln x ? y ? y ' ? x x ln x ? x x . y x

高中数学必修 2 知识点
?正角:按逆时针方向旋转形成的角 ? 1、任意角 ?负角:按顺时针方向旋转形成的角 ?零角:不作任何旋转形成的角 ?
2、角 ? 的顶点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 ? 为第几象限角.

? ? 第二象限角的集合为 ?? k ? 360 ? 90 ? k ? 360 ? 180 , k ? ?? 第三象限角的集合为 ?? k ? 360 ? 180 ? ? ? k ? 360 ? 270 , k ? ?? 第四象限角的集合为 ?? k ? 360 ? 270 ? ? ? k ? 360 ? 360 , k ? ?? 终边在 x 轴上的角的集合为 ?? ? ? k ?180 , k ? ?? 终边在 y 轴上的角的集合为 ?? ? ? k ?180 ? 90 , k ? ?? 终边在坐标轴上的角的集合为 ?? ? ? k ? 90 , k ? ??
第一象限角的集合为 ? k ? 360 ? ? ? k ? 360 ? 90 , k ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

11

3、与角 ? 终边相同的角的集合为 ? ? ? k ? 360 ? ? , k ? ?
?

?

?

4、已知 ? 是第几象限角,确定

?
n

? n ? ? ? 所在象限的方法:先把各象限均分 n 等份,再从
*

x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 ? 原来是第几象限对应的 ? 标号即为 终边所落在的区域. n
5、长度等于半径长的弧所对的圆心角叫做 1 弧度. 6、半径为 r 的圆的圆心角 ? 所对弧的长为 l ,则角 ? 的弧度数的绝对值是 ? ?
? 7、弧度制与角度制的换算公式: 2? ? 360 , 1 ?
?

l . r

?
180

,1 ? ?

? 180 ? ? ? ? 57.3 . ? ? ?

?

8、若扇形的圆心角为 ?

??为弧度制? ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则

1 1 l ? r ? , C ? 2r ? l , S ? lr ? ? r 2 . 2 2
9、设 ? 是一个任意大小的角, ? 的终边上任意一点 ? 的坐标是 ? x, y ? ,它与原点的距离是

r r ? x2 ? y 2 ? 0 ,则 sin ? ?

?

?

y x y , cos ? ? , tan ? ? ? x ? 0 ? . r r x

10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正, 第四象限余弦为正. 11、三角函数线: sin ? ? ?? , cos ? ? ?? , tan ? ? ?? . y 2 2 12、同角三角函数的基本关系: ?1? sin ? ? cos ? ? 1 P T sin ? 2 2 2 2 v sin ? ? 1 ? cos ? , cos ? ? 1 ? sin ? ; ? 2 ? ? tan ?

?

?

cos ?

O

sin ? ? ? ? sin ? ? tan ? cos ? , cos ? ? ?. tan ? ? ?
13、三角函数的诱导公式:

M A

x

?1? sin ? 2k? ? ? ? ? sin ? , cos ? 2k? ? ? ? ? cos? , tan ? 2k? ? ? ? ? tan ? ? k ??? . ? 2? sin ?? ? ? ? ? ? sin ? , cos ?? ? ? ? ? ? cos? , tan ?? ? ? ? ? tan ? . ?3? sin ? ?? ? ? ? sin ? , cos ? ?? ? ? cos? , tan ? ?? ? ? ? tan ? . ? 4? sin ?? ?? ? ? sin ? , cos ?? ? ? ? ? ? cos? , tan ?? ? ? ? ? ? tan ? .
口诀:函数名称不变,符号看象限.

? 5? sin ? ?

? ?? ? ? ? ? ? cos ? , cos ? ? ? ? ? sin ? . ?2 ? ?2 ?

?

12

? 6 ? sin ? ?

? ?? ? ? ? ? ? cos ? , cos ? ? ? ? ? ? sin ? . ?2 ? ?2 ?

?

口诀:正弦与余弦互换,符号看象限. 14、 函数 y ? sin x 的图象上所有点向左 (右) 平移 ? 个单位长度, 得到函数 y ? sin ? x ? ? ? 的图象;再将函数 y ? sin ? x ? ? ? 的图象上所有点的横坐标伸长(缩短)到原来的

1

?

倍(纵

坐标不变) ,得到函数 y ? sin ?? x ? ? ? 的图象;再将函数 y ? sin ?? x ? ? ? 的图象上所有点 的纵坐标伸长(缩短)到原来的 ? 倍(横坐标不变) ,得到函数 y ? ? sin ?? x ? ? ? 的图象. 函数 y ? sin x 的图象上所有点的横坐标伸长(缩短)到原来的 函数

1

?

倍(纵坐标不变) ,得到

y ? sin ? x 的图象;再将函数 y ? sin ? x 的图象上所有点向左(右)平移

? 个单位长度, ?

得到函数 y ? sin ?? x ? ? ? 的图象;再将函数 y ? sin ?? x ? ? ? 的图象上所有点的纵坐标伸 长(缩短)到原来的 ? 倍(横坐标不变) ,得到函数 y ? ? sin ?? x ? ? ? 的图象. 函数 y ? ? sin ?? x ? ? ?? ? ? 0, ? ? 0? 的性质: ①振幅: ? ;②周期: ? ?

2?

?

;③频率: f ?

1 ? ? ;④相位: ? x ? ? ;⑤初相: ? . ? 2?

函数 y ? ? sin ?? x ? ? ? ? ? ,当 x ? x1 时,取得最小值为 ymin ;当 x ? x2 时,取得最大值 为 ymax ,则 ? ?

1 1 ? ? ymax ? ymin ? , ? ? ? ymax ? ymin ? , ? x2 ? x1 ? x1 ? x2 ? . 2 2 2
y ? cos x

15、正弦函数、余弦函数和正切函数的图象与性质: 性 函 质 数 y ? sin x

y ? tan x

图 象

定 义 域 值 域

R

R

? ? ? ? x x ? k? ? , k ? ? ? 2 ? ?
R

??1,1?

??1,1?
13

当 x ? 2 k? ? 时 ,

?
2

? k ???

当 x ? 2k? ? k ??? 时,

最 值

ymax ? 1 ; 当

ymax ? 1 ;当 x ? 2k? ? ?

x ? 2 k? ?

?
2

? k ??? 时, ymin ? ?1.
2?

既无最大值也无最小值

? k ??? 时, ymin ? ?1.
周 期 性 奇 偶 性

2?

?

奇函数

偶函数

奇函数

在 ? 2k? ? 单 调 性

? ?

?
2

, 2k? ?

??
2? ?
在 ?2k? ? ? , 2k? ? ? k ??? 上 是增函数; ?2k? ,2k? ? ? ? 在 在 ? k? ?

? k ??? 上是增函数;在
? 3? ? ? 2k? ? , 2k? ? ? ? 2 2? ?

? ?

?
2

, k? ?

??
? 2?

? k ??? 上是减函数.

? k ??? 上是增函数.

? k ??? 上是减函数.
对称中心 ? k? ,0?? k ??? 对 称 性 对 称 轴 对 称 中 心 对 称 中 心

x ? k? ?

?
2

?k ? ??

? ? ? ? k? ? , 0 ? ? k ? ? ? 2 ? ?
对称轴 x ? k? ? k ???

? k? ? , 0 ? ? k ? ?? ? ? 2 ?
无对称轴

16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为 0 的向量. 单位向量:长度等于 1 个单位的向量. 平行向量(共线向量) :方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶ 三 角 形 不 等 式 :

? ? ? ? ? ? a ? b ? a ?b ? a ? b .
⑷ 运 算 性 质 : ① 交 换 律 :

C

? a
14

?

? b

?

? ? ? ? ?? ? ? ?? a ? b ? ?C ? ? ? ? ? C

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? a ? b ? b ? a ;②结合律: a ? b ? c ? a ? b ? c ;③ a ? 0 ? 0 ? a ? a .

?

?

?

?

⑸坐标运算:设 a ? ? x1, y1 ? , b ? ? x2 , y2 ? ,则 a ? b ? ? x1 ? x2 , y1 ? y2 ? . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设 a ? ? x1, y1 ? , b ? ? x2 , y2 ? ,则 a ? b ? ? x1 ? x2 , y1 ? y2 ? . 设 ? 、 ? 两点的坐标分别为 ? x1 , y1 ? , ? x2 , y2 ? ,则 ?? ? ? x1 ? x2 , y1 ? y2 ? . 19、向量数乘运算: ? ? ⑴实数 ? 与向量 a 的积是一个向量的运算叫做向量的数乘,记作 ? a . ①

?

?

? ?

?

?

? ?

??? ?

?a ? ? a ;
?

?

?

②当 ? ? 0 时, ? a 的方向与 a 的方向相同;当 ? ? 0 时, ? a 的方向与 a 的方向相反;当

?

?

?

? ? ? ? 0 时, ? a ? 0 .
⑵运算律:① ? ? ?a ? ? ? ?? ? a ;② ? ? ? ? ? a ? ?a ? ?a ;③ ? a ? b ? ? a ? ?b . ⑶坐标运算:设 a ? ? x, y ? ,则 ?a ? ? ? x, y ? ? ? ? x, ? y ? . 20、向量共线定理:向量 a a ? 0 与 b 共线,当且仅当有唯一一个实数 ? ,使 b ? ? a .

?

?

?

?

?

?? ?

?

?

?

?

?

? ?

?

?

?

?

?

?

b 设 a ? ? x1, y1 ? , ? ? x2 , y2 ? , 其中 b ? 0 , 则当且仅当 x1 y2 ? x2 y1 ? 0 时, 向量 a 、 b ? 0 b
共线.

?

?

?

?

?

? ?

?

?

?

21、平面向量基本定理:如果 e1 、 e2 是同一平面内的两个不共线向量,那么对于这一平面 内的任意向量 a ,有且只有一对实数 ?1 、?2 ,使 a ? ?1e1 ? ? e2 . (不共线的向量 e1 、e2 作 2 为这一平面内所有向量的一组基底) 22、 分点坐标公式: 设点 ? 是线段 ?1?2 上的一点,?1 、?2 的坐标分别是 ? x1 , y1 ? ,? x2 , y2 ? , 当 ?1? ? ? ??2 时,点 ? 的坐标是 ? 23、平面向量的数量积: ⑴ a ? b ? a b cos ? a ? 0, b ? 0, 0 ? ? ? 180 .零向量与任一向量的数量积为 0 .
? ?

??

?? ?

?

?

? ?

?? ?

??

?? ?

??? ?

????

? x1 ? ? x2 y1 ? ? y2 ? , ?. 1? ? ? ? 1? ?

? ?

? ?
?

??

? ?

?

?

a ⑵性质: a 和 b 都是非零向量, 设 则① a ? b ? a ? b ? 0 . ②当 a 与 b 同向时, ? b ? a b ;
2 当 a 与 b 反向时, a ? b ? ? a b ; a ? a ? a ? a 或 a ? a ? a .③ a ? b ? a b .

?

?

?

? ?
?2

?

?

? ?

? ?

?

?

? ?

? ?

? ?

?

?

? ?

? ?

? ?

15

⑶运算律:① a ? b ? b ? a ;② ? ? a ? ? b ? ? a ? b ? a ? ?b ;③ a ? b ? c ? a ? c ? b ? c . ⑷坐标运算:设两个非零向量 a ? ? x1, y1 ? , b ? ? x2 , y2 ? ,则 a ? b ? x1x2 ? y1 y2 .
2 2 若 a ? ? x, y ? ,则 a ? x ? y ,或 a ?

? ?

? ?

?

?

?? ?
?

?

?

? ?

?

?? ?

? ?

? ?

? ?

?

? ?

?

?2

?

x2 ? y 2 .

设 a ? ? x1, y1 ? , b ? ? x2 , y2 ? ,则 a ? b ? x1x2 ? y1 y2 ? 0 . 设 a 、 b 都 是 非 零 向 量 , a ? ? x1, y1 ? , b ? ? x2 , y2 ? , ? 是 a 与 b 的 夹 角 , 则

?

?

?

?

?

?

?

?

?

?

? ? x1 x2 ? y1 y2 a ?b cos ? ? ? ? ? . 2 2 2 a b x1 ? y 12 x 2? y 2
24、两角和与差的正弦、余弦和正切公式: ⑴ cos ?? ? ? ? ? cos ? cos ? ? sin ? sin ? ; ⑵ cos ?? ? ? ? ? cos ? cos ? ? sin ? sin ? ; ⑶ sin ?? ? ? ? ? sin ? cos ? ? cos ? sin ? ; ⑷ sin ?? ? ? ? ? sin ? cos ? ? cos ? sin ? ; ⑸ tan ?? ? ? ? ?

tan ? ? tan ? ( tan ? ? tan ? ? tan ?? ? ? ??1 ? tan ? tan ? ? ) ; 1 ? tan ? tan ? tan ? ? tan ? ( tan ? ? tan ? ? tan ?? ? ? ??1 ? tan ? tan ? ? ) . 1 ? tan ? tan ?

⑹ tan ?? ? ? ? ?

25、二倍角的正弦、余弦和正切公式: ⑴ sin 2? ? 2sin ? cos ? . ⑵

cos 2? ? cos2 ? ? sin 2 ? ? 2cos2 ? ?1 ? 1 ? 2sin 2 ?
1 ? cos 2? ) . 2



cos 2 ? ?

cos 2? ? 1 2



sin 2 ? ?

⑶ tan 2? ?

2 tan ? . 1 ? tan 2 ?
?2 ? ?2 sin ?? ? ? ? ,其中 tan ? ?

26、 ? sin ? ? ? cos ? ?

? . ?

高中数学必修 3 知识点
一、直线与方程 (1)直线的倾斜角
16

定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行 或重合时,我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常 用 k 表示。即 k ? tan ? 。斜率反映直线与轴的倾斜程度。 当 ? ? 0? ,90? 时, k ? 0 ; 在。 ②过两点的直线的斜率公式: k ?

?

?

当 ? ? 90? ,180? 时, k ? 0 ;

?

?

当 ? ? 90 时, k 不存
?

y 2 ? y1 ( x1 ? x2 ) x2 ? x1

注意下面四点:(1)当 x1 ? x 2 时,公式右边无意义,直线的斜率不存在,倾斜角为 90°; (2)k 与 P1、P2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求 得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式: y ? y1 ? k ( x ? x1 ) 直线斜率 k,且过点 ?x1, y1 ? 注意:当直线的斜率为 0°时,k=0,直线的方程是 y=y1。 当直线的斜率为 90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因 l 上每一点的横坐标都等于 x1,所以它的方程是 x=x1。 ②斜截式: y ? kx ? b ,直线斜率为 k,直线在 y 轴上的截距为 b ③两点式: ④截矩式:

y ? y1 x ? x1 ? ( x1 ? x2 , y1 ? y2 )直线两点 ?x1, y1 ? , ?x2 , y2 ? y2 ? y1 x2 ? x1

x y ? ?1 a b 其中直线 l 与 x 轴交于点 ( a,0) ,与 y 轴交于点 (0, b) ,即 l 与 x 轴、 y 轴的截距分别为 a , b 。

⑤一般式: Ax ? By ? C ? 0 (A,B 不全为 0) 1 2 注意:○各式的适用范围 ○特殊的方程如: 平行于 x 轴的直线: y ? b (b 为常数) ; 平行于 y 轴的直线: x ? a (a 为常数) ; (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平 行 于 已 知 直 线 A0 x ? B0 y ? C0 ? 0 ( A0 , B0 是 不 全 为 0 的 常 数 ) 的 直 线 系 :

A0 x ? B0 y ? C ? 0 (C 为常数)
(二)过定点的直线系 (ⅰ)斜率为 k 的直线系: y ? (ⅱ) 过两条直线 l1 : 为

y0 ? k ?x ? x0 ? ,直线过定点 ?x0 , y0 ? ;

A1 x ? B1 y ? C1 ? 0 ,l2 : A2 x ? B2 y ? C2 ? 0 的交点的直线系方程

,其中直线 l 2 不在直线系中。 ?A1x ? B1 y ? C1 ? ? ??A2 x ? B2 y ? C2 ? ? 0 ( ? 为参数) (6)两直线平行与垂直 当 l1 : y ? k1 x ? b1 , l 2 : y ? k 2 x ? b2 时,

l1 // l 2 ? k1 ? k 2 , b1 ? b2 ; l1 ? l2 ? k1k 2 ? ?1
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点 l1 : A1 x ? B1 y ? C1 ? 0 l 2 : A2 x ? B2 y ? C2 ? 0 相交

A x ? B1 y ? C1 ? 0 交点坐标即方程组 ? 1 的一组解。 ? ? A2 x ? B2 y ? C 2 ? 0

17

方程组无解 ? l1 // l 2 ; 则 | AB |? ( x2 ? x1 )2 ? ( y2 ? y1 )2

方程组有无数解 ? l1 与 l 2 重合

(8)两点间距离公式:设 A( x1 , y1 ),(x2 , y2) 是平面直角坐标系中的两个点, B (9) 点到直线距离公式: 一点 P?x0 , y0 ? 到直线 l1 : Ax ? By ? C ? 0 的距离 d ? Ax0 ? By0 ? C
A2 ? B 2

(10)两平行直线距离公式 在任一直线上任取一点,再转化为点到直线的距离进行求解。 二、圆的方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的 半径。 2、圆的方程 (1)标准方程 ?x ? a? ? ? y ? b? ? r 2 ,圆心
2 2

?a, b ? ,半径为 r;
? 2 2?

(2)一般方程 x ? y ? Dx ? Ey ? F ? 0
2 2

当 D ? E ? 4F ? 0 时,方程表示圆,此时圆心为 ? ? D ,? E ? ,半径为 r ? 1 D 2 ? E 2 ? 4 F ? ?
2 2

2

当 D ? E ? 4F ? 0 时,表示一个点; 当 D ? E ? 4F ? 0 时,方程不表示任何图 形。 (3)求圆方程的方法: 一般都采用待定系数法: 先设后求。 确定一个圆需要三个独立条件, 若利用圆的标准方程, 需求出 a,b,r;若利用一般方程,需要求出 D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (1)设直线 l : Ax ? By ? C ? 0 ,圆 C : ?x ? a?2 ? ? y ? b?2 ? r 2 ,圆心 C ?a, b ? 到 l 的距离为
2 2 2 2

d?

(2)设直线 l : Ax ? By ? C ? 0 ,圆 C : ?x ? a? ? ? y ? b? ? r 2 ,先将方程联立消元,得到 一个一元二次方程之后,令其中的判别式为 ? ,则有 ? ? 0 ? l与C相离 ; ? ? 0 ? l与C相切 ; ? ? 0 ? l与C相交 2 注:如果圆心的位置在原点,可使用公式 xx0 ? yy0 ? r 去解直线与圆相切的问题,其中 x0 , y0 表示切点坐标,r 表示半径。 (3)过圆上一点的切线方程: 2 ①圆 x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 xx0 ? yy0 ? r (课本命题). 2 2 2 ②圆(x-a) +(y-b) =r ,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广). 4、圆与圆的位置关系:通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。 2 2 2 2 设圆 C1 : ?x ? a1 ? ? ? y ? b1 ? ? r , C2 : ?x ? a2 ? ? ? y ? b2 ?2 ? R 2 两圆的位置关系常通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。 当 d ? R ? r 时两圆外离,此时有公切线四条; 当 d ? R ? r 时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当 R ? r ? d ? R ? r 时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当 d ? R ? r 时,两圆内切,连心线经过切点,只有一条公切线; 当 d ? R ? r 时,两圆内含; 当 d ? 0 时,为同心圆。 三、立体几何初步 1、柱、锥、台、球的结构特征
2 2

Aa ? Bb ? C ,则有 d A2 ? B 2

? r ? l与C相离 ; d ? r ? l与C相切 ; d ? r ? l与C相交

?

?

18

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共 边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱 ABCDE ? A B C D E 或用对角线的端点字母,如五棱柱
' ' ' ' '

AD '
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且 相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何 体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 P ? A B C D E 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
' ' ' ' '

表示:用各顶点字母,如五棱台 P ? A B C D E 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几 何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何 体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征: ①上下底面是两个圆; ②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右) 、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
' ' ' ' '

3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与 x 轴平行的线段仍然与 x 平行且长度不变;
19

②原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高, h 为斜高,l 为母线)
'

S直棱柱侧面积 ? ch
S正棱台侧面积 ?

S圆柱侧 ? 2?rh S正棱锥侧面积 ? ch '
S圆台侧面积 ? (r ? R)?l

1 2

S圆锥侧面积 ? ?rl

S圆柱表 ? 2?r ?r ? l ?
V柱 ? Sh

1 (c1 ? c2 )h' 2

S圆 锥 表? ?r ?r ? l ?

S圆台表 ? ? r 2 ? rl ? Rl ? R2
1 V圆锥 ? ?r 2 h 3

?

?

(3)柱体、锥体、台体的体积公式

V圆柱 ? S h ? 2r h V锥 ? 1 S h ?
3

1 V台 ? (S ' ? S ' S ? S )h 3

1 1 ' V圆台 ? (S ' ? S S ? S )h ? ? (r 2? rR ? R )2 h 3 3

(4)球体的表面积和体积公式:V 球 = 4 ? R3 ; S 球面 = 4? R
3

2

4、空间点、直线、平面的位置关系 (1)平面 ① 平面的概念: A.描述性说明; B.平面是无限伸展的; ② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内) ; 也可以用两个相对顶点的字母来表示,如平面 BC。 ③ 点与平面的关系:点 A 在平面 ? 内,记作 A ? ? ;点 A 不在平面 ? 内,记作 A ? ? 点与直线的关系:点 A 的直线 l 上,记作:A∈l; 点 A 在直线 l 外,记作 A ?l;

直线与平面的关系:直线 l 在平面α内,记作 l ? α;直线 l 不在平面α内,记作 l ? α。 (2)公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面 内。 (即直线在平面内,或者平面经过直线) 应用:检验桌面是否平; 判断直线是否在平面内 用符号语言表示公理 1: A ? l , B ? l , A ? ? , B ? ? ? l ? ? (3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一 平面。 公理 2 及其推论作用:①它是空间内确定平面的依据 线 符号:平面α和β相交,交线是 a,记作α∩β=a。 符号语言: P ? A ? B ? A ? B ? l , P ? l 公理 3 的作用:
20

②它是证明平面重合的依据

(4)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直

①它是判定两个平面相交的方法。 ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 (5)公理 4:平行于同一条直线的两条直线互相平行 (6)空间直线与直线之间的位置关系 ① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。 ③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:直线 a、b 是异面直线,经过空间任意一点 O,分别引直线 a’∥a,b’ ∥b,则把直线 a’和 b’所成的锐角(或直角)叫做异面直线 a 和 b 所成的角。两条异面直线 所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线 互相垂直。 说明: (1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理 (2)在异面直线所成角定义中,空间一点 O 是任取的,而和点 O 的位置无关。 ②求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点 选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角 (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系 直线在平面内——有无数个公共点.

三种位置关系的符号表示:a ? α a∩α=A a∥α (9)平面与平面之间的位置关系:平行——没有公共点;α∥β 相交——有一条公共直线。α∩β=b 5、空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行 ? 线面平行 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行。线面平行 ? 线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行→面面平行) , (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。 (线线平行→面面平行) , (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理 (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。 (面面平行→线面平 行) (2) 如果两个平行平面都和第三个平面相交, 那么它们的交线平行。 (面面平行→线线平行) 7、空间中的垂直问题 (1)线线、面面、线面垂直的定义 ①两条异面直线的垂直: 如果两条异面直线所成的角是直角, 就说这两条异面直线互相垂直。 ②线面垂直: 如果一条直线和一个平面内的任何一条直线垂直, 就说这条直线和这个平面垂 直。 ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组 成的图形)是直二面角(平面角是直角) ,就说这两个平面垂直。 (2)垂直关系的判定和性质定理
21

①线面垂直判定定理和性质定理 判定定理: 如果一条直线和一个平面内的两条相交直线都垂直, 那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理: 如果两个平面互相垂直, 那么在一个平面内垂直于他们的交线的直线垂直于另一 个平面。 9、空间角问题 (1)直线与直线所成的角 ①两平行直线所成的角:规定为 0? 。 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③两条异面直线所成的角:过空间任意一点 O,分别作与两条异面直线 a,b 平行的直线 a ?, b? ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所 成的角。 (2)直线和平面所成的角 ? ? ①平面的平行线与平面所成的角: 规定为 0 。 ②平面的垂线与平面所成的角: 规定为 90 。 ③平面的斜线与平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角, 叫做这条 直线和这个平面所成的角。 求斜线与平面所成角的思路类似于求异面直线所成角: “一作,二证,三计算” 。 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息: (1)斜线上一点到面的垂线; (2)过斜线上的一 点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。 (3)二面角和二面角的平面角 ①二面角的定义: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面。 ②二面角的平面角: 以二面角的棱上任意一点为顶点, 在两个面内分别作垂直于棱的两条射 .. ... 线,这两条射线所成的角叫二面角的平面角。 ③直二面角:平面角是直角的二面角叫直二面角。 两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平 面垂直,那么所成的二面角为直二面角 ④求二面角的方法 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法: 已知二面角内一点到两个面的垂线时, 过两垂线作平面与两个面的交线所成的角为 二面角的平面角 7、空间直角坐标系 (1)定义:如图, OBCD ? D, A, B,C , 是单位正方体.以 A 为原点, 分别以 OD,O A, ,OB 的方向为正方向,建立三条数轴 x轴.y轴.z轴 。 这时建立了一个空间直角坐标系 Oxyz. 1)O 叫做坐标原点 2)x 轴,y 轴,z 轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐 标面。 (2)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向 为 x 轴正方向,食指指向为 y 轴正向,中指指向则为 z 轴正向,这样也可以决定三轴间的 相位置。 (3)任意点坐标表示:空间一点 M 的坐标可以用有序实数组 ( x, y , z ) 来表示,有序实数组 ( x, y , z ) 叫做点 M 在此空间直角坐标系中的坐标,记作 M ( x, y, z ) (x 叫做点 M 的横坐标, y 叫做点 M 的纵坐标,z 叫做点 M 的竖坐标) (4)空间两点距离坐标公式: d ? ( x 2 ? x1 ) 2 ? ( y 2 ? y1 ) 2 ? ( z 2 ? z1 ) 2

22

高中数学必修 4 知识点
1、正弦定理:在 ??? C 中, a 、 b 、 c 分别为角 ? 、 ? 、 C 的对边, R 为 ??? C 的外接

a b c ? ? ? 2R . sin ? sin ? sin C 2、正弦定理的变形公式:① a ? 2 R sin ? , b ? 2 R sin ? , c ? 2 R sin C ; a b c ② sin ? ? , sin ? ? , sin C ? ; 2R 2R 2R ③ a : b : c ? sin ? : sin ? : sin C ; a?b?c a b c ? ? ? ④ . sin ? ? sin ? ? sin C sin ? sin ? sin C 1 1 1 3、三角形面积公式: S ???C ? bc sin ? ? ab sin C ? ac sin ? . 2 2 2
圆的半径,则有 4、余弦定理:在 ??? C 中,有 a ? b ? c ? 2bc cos ? , b ? a ? c ? 2ac cos ? ,
2 2 2 2 2 2

c2 ? a 2 ? b2 ? 2ab cos C .
5、余弦定理的推论: cos ? ?

b2 ? c 2 ? a 2 a 2 ? c 2 ? b2 a 2 ? b2 ? c 2 , cos ? ? , cos C ? . 2bc 2ab 2ac
2 2 2

6、设 a 、 b 、 c 是 ??? C 的角 ? 、 ? 、 C 的对边,则:①若 a ? b ? c ,则 C ? 90 ;
?

②若 a ? b ? c ,则 C ? 90 ;③若 a ? b ? c ,则 C ? 90 .
2 2 2

?

2

2

2

?

7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第 2 项起,每一项都不小于它的前一项的数列. 12、递减数列:从第 2 项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列. 14、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列 ?an ? 的第 n 项与序号 n 之间的关系的公式. 16、数列的递推公式:表示任一项 an 与它的前一项 an ?1 (或前几项)间的关系的公式. 17、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为 等差数列,这个常数称为等差数列的公差. 18、由三个数 a , ? , b 组成的等差数列可以看成最简单的等差数列,则 ? 称为 a 与 b 的 等差中项.若 b ?

a?c ,则称 b 为 a 与 c 的等差中项. 2
23

19、若等差数列

?an ? 的首项是 a ,公差是 d ,则 a
1

n

? a1 ? ? n ?1? d .

20、通项公式的变形:① an

? am ? ? n ? m? d ;② a1 ? an ? ? n ?1? d ;③ d ?


an ? a1 n ?1



④n ?

an ? am an ? a1 ? 1 ;⑤ d ? n?m d

21、若 ?an ? 是等差数列,且 m ? n ? p ? q ( m 、 n 、 p 、 q ? ?* ) ,则 am ? an 若 ?an ? 是等差数列,且 2n ? p ? q ( n 、 p 、 q ? ?* ) ,则 2an 22、等差数列的前 n 项和的公式:① Sn

? ap ? aq ;

? ap ? aq .

?

n ? a1 ? an ? n ? n ? 1? d. ;② Sn ? na1 ? 2 2

* 23、等差数列的前 n 项和的性质:①若项数为 2n n ? ? ,则 S2n

?

?

? n ? an ? an?1 ? ,且

S偶 ? S奇 ? nd ,

S奇 a ? n S偶 an?1



* ②若项数为 2n ? 1 n ? ? ,则 S2n?1 ? ? 2n ?1? an ,且 S奇 ? S偶 ? an ,

?

?

S奇 n (其中 ? S偶 n ? 1

. S奇 ? nan , S偶 ? ? n ?1? an ) 24、如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为 等比数列,这个常数称为等比数列的公比. 25、 a 与 b 中间插入一个数 G , a ,G ,b 成等比数列, G 称为 a 与 b 的等比中项. 在 使 则 若

G 2 ? ab ,则称 G 为 a 与 b 的等比中项.
26、若等比数列 ?an ? 的首项是 a1 ,公比是 q ,则 an ? a1q n?1 . 27、通项公式的变形:① an

? amqn?m ;② a1 ? an q?? n?1? ;③ q n ?1

?

an ;④ a1

q n?m ?

an am



* 28、若 ?an ? 是等比数列,且 m ? n ? p ? q ( m 、 n 、 p 、 q ? ? ) ,则 am ? an ? a p ? aq ; * 若 ?an ? 是等比数列,且 2n ? p ? q ( n 、 p 、 q ? ? ) ,则 an

2

? ap ? aq .

24

?na1 ? q ? 1? ? 29、等比数列 ?an ? 的前 n 项和的公式: Sn ? ? a1 ?1 ? q n ? a ? a q . ? 1 n ? q ? 1? ? 1? q ? 1? q
* 30、等比数列的前 n 项和的性质:①若项数为 2n n ? ? ,则

?

?

S偶 S奇

?q.

② Sn? m

? Sn ? qn ? Sm .

③ Sn , S2n ? Sn , S3n ? S2 n 成等比数列. 31、 a ? b ? 0 ? a ? b ; a ? b ? 0 ? a ? b ; a ? b ? 0 ? a ? b . 32、 不等式的性质: ① a ? b ? b ? a ; a ? b, b ? c ? a ? c ; a ? b ? a ? c ? b ? c ; ② ③ ④ a ? b, c ? 0 ? ac ? bc , a ? b, c ? 0 ? ac ? bc ;⑤ a ? b, c ? d ? a ? c ? b ? d ; ⑥ a ? b ? 0, c ? d ? 0 ? ac ? bd ;⑦ a ? b ? 0 ? an ? bn ? n ??, n ? 1? ; ⑧ a ? b ? 0 ? n a ? n b ? n ? ?, n ? 1? . 33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系: 判别式 ? ? b ? 4ac
2

??0

??0

??0

二次函数 y ? ax ? bx ? c
2

? a ? 0? 的图象
有两个相异实数根 一元二次方程 ax ? bx ? c ? 0
2

x1,2 ?

? a ? 0? 的根
ax2 ? bx ? c ? 0

?b ? ? 2a

有两个相等实数根

x1 ? x2 ? ?

? x1 ? x2 ?

b 2a

没有实数根

一元二次 不等式的 解集

?x x ? x 或x ? x ?
1 2

? a ? 0?
ax2 ? bx ? c ? 0

? b? ?x x ? ? ? 2a ? ?
?

R

?x x

1

? x ? x2 ?

?

25

? a ? 0?
35、二元一次不等式:含有两个未知数,并且未知数的次数是 1 的不等式. 36、二元一次不等式组:由几个二元一次不等式组成的不等式组. 37、二元一次不等式(组)的解集:满足二元一次不等式组的 x 和 y 的取值构成有序数对

? x, y ? ,所有这样的有序数对 ? x, y ? 构成的集合.
38、在平面直角坐标系中,已知直线 ?x ? ?y ? C ? 0 ,坐标平面内的点 ? ? x0 , y0 ? . ①若 ? ? 0 , ?x0 ? ?y0 ? C ? 0 ,则点 ? ? x0 , y0 ? 在直线 ?x ? ?y ? C ? 0 的上方. ②若 ? ? 0 , ?x0 ? ?y0 ? C ? 0 ,则点 ? ? x0 , y0 ? 在直线 ?x ? ?y ? C ? 0 的下方. 39、在平面直角坐标系中,已知直线 ?x ? ?y ? C ? 0 .

y ? ①若 ? ? 0 , ?x?? ? C 则

0 表示直线 ?x ? ?y ? C ? 0 上方的区域;?x ? ?y ? C ? 0 表

示直线 ?x ? ?y ? C ? 0 下方的区域.

y ? ②若 ? ? 0 , ?x?? ? C 则

0 表示直线 ?x ? ?y ? C ? 0 下方的区域;?x ? ?y ? C ? 0 表

示直线 ?x ? ?y ? C ? 0 上方的区域. 40、线性约束条件:由 x , y 的不等式(或方程)组成的不等式组,是 x , y 的线性约束条 件. 目标函数:欲达到最大值或最小值所涉及的变量 x , y 的解析式. 线性目标函数:目标函数为 x , y 的一次解析式. 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解 ? x, y ? . 可行域:所有可行解组成的集合. 最优解:使目标函数取得最大值或最小值的可行解. 41、设 a 、 b 是两个正数,则 几何平均数. 42、均值不等式定理: 若 a ? 0 , b ? 0 ,则 a ? b ? 2 ab ,即 43、常用的基本不等式:① a ? b ? 2ab ? a, b ? R ? ;② ab ?
2 2

a?b 称为正数 a 、 b 的算术平均数, ab 称为正数 a 、 b 的 2
a?b ? ab . 2

a 2 ? b2 ? a, b ? R ? ; 2

26

③ ab ? ?

a 2 ? b2 ? a ? b ? ? a?b ? ;④ ?? ? ? a ? 0, b ? 0? ? ? a, b ? R ? . 2 ? 2 ? ? 2 ?
2 2

44、极值定理:设 x 、 y 都为正数,则有 ⑴若 x ? y ? s (和为定值) ,则当 x ? y 时,积 xy 取得最大值

s2 . 4

⑵若 xy ? p (积为定值) ,则当 x ? y 时,和 x ? y 取得最小值 2 p .

27


赞助商链接

高中数学必修1.2.4.5知识点

高中数学必修1.2.4.5知识点_数学_高中教育_教育专区。不含必修3的知识点,函数数列知识都是按高三总复习的知识点排列高一数学必修 1 知识网络集合 ? ()元素与...

高中数学必修1、2、4、5知识点整合

高中数学必修1245知识点整合_高三数学_数学_高中教育_教育专区。该上高二了,总结一下,大家分享高中高一数学必修知识点总结 必修一 第一章 集合与函数概念...

高中数学必修一二三四五知识点

高中数学必修 1 知识点 一第 章集 与数念合函概、合关念一集有概集的义...用丁母示合 A={我的球员校篮队 },B={1,2,3,4,5} 2. 合表方:举与...

数学必修1、2、4、5知识点总结

数学必修1245知识点总结_高三数学_数学_高中教育_教育专区。dddddddddddddddddd数学必修 124、5 基础知识 第1页 必修 1 数学基础知识第一章、集合...

高中数学必修1-5知识点归纳及公式大全

高中数学必修1-5知识点归纳及公式大全_数学_高中教育_教育专区。高中数学必修1-...4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般...

高中数学必修1-5知识点归纳

人教A版高中数学必修1-5知识点归纳,全面,实用,欢迎下载!!必修1 数学知识点第...4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般...

高中数学知识点总结(必修1、2、4、5)

高中数学知识点总结(必修1245) 最全面的数学复习资料由众多优秀老师呕心历血制作有明确知识点并配有的题型最全面的数学复习资料由众多优秀老师呕心历血制作...

高中数学大纲必修1-5知识点

高中数学大纲必修1-5知识点高一数学必修 1 知识网络集合 ? ()元素与集合的...二、函数的解析式的常用求法: 1、定义法;2、换元法;3、待定系数法;4、...

高中数学必修一至必修五知识点总结人教版

构成函数的三要素:定义域、对应关系和值域 4.了解区间的概念 (1)区间的分类:...1. 2、指数函数的图象和性质 -2- 高中数学必修 1 至必修 5 知识点总结(...

数学必修1、2、4、5 知识点整合

数学必修1、2、4、5 知识点整合_高二数学_数学_高中教育_教育专区。必修 1 数学基础知识第一章、集合与函数概念 §1.1.1、集合 、 1、 把研究的对象统称为...