nbhkdz.com冰点文库

2015年高中数学 2.4.1线性回归方程学案1 苏教版必修3


线性回归方程 第 25 课时
【学习导航】

学习要求
1.理解线性回归的基本思想和方法,体会 变量之间的相关关系。线性回归方程的 求法。 2.会画出一组数据的散点图,并会通过散 点图判断出这组数据是否具有线性关 系。 【课堂互动】

当 a,b 使 Q ? ( y1 ? bx1 ? a) 2 ?

( y2 ? bx2 ? a) 2 ? ? ? ( yn ? bxn ? a) 2
? ? bx ? a 为拟合这 n 对数 取得最小值时, 就称 y
据 的 线 性 回 归 方 程 (linear regression equation), 将该方程所表示的直线称为回归直 线。 6.用书上的方法 3,可求得线性回归方程

自学评价
在实际问题中,变量之间的常见关系有两 类:一类是确定性函数关系,变量之间的关 系可以用函数表示,另一类是相关关系,变 量之间有一定的联系,但不能完全用函数来 表达 2.建立平面直角坐标系,将数据构成的数对 所表示的点在坐标系内标出,这样的图称为 散点图(scatter diagram) 3.在散点图中如果点散布在一条直线的附 近, 可用线性函数近似地表示 x 和 y 之间的 关系。选择怎样的直线我们有下列思考方 案: (1)选择能反映直线变化的两个点 (2)取一条直线,使得位于该直线一侧和另 一侧点的个数基本相同 (3)多取几组点,确定几条直线方程,再分 别 算出各条直线斜率、截距的平均值,作 为所求直线的斜率、截距

? ? bx ? a 中的系数: y

b?

n? xi yi ? (? xi )(? yi )
i ?1 i ?1

n

n

n

n? xi2 ?(? xi )
i ?1 i ?1

n

n

i ?1 2

a = y ? bx

(*)

7.用回归直线进行拟合的一般步骤为: (1)作出散点图,判断散点是否在一条直线附近 (2)如果散点在一条直线附近,用上面的公式求 出 a,b,并写出线性回归方程 【精典范例】 例 1 下表为某地近几年机动车辆数与交通事故 数的统计资料, 请判断机动车辆数与交通事故数 之间是否具有线性相关关系, 如果具有线性相关 关系, 求出线性回归方程; 如果不具有线性相关 关系,说明理由。 机动车辆 数 x/千台 交通事故 数 y/千件 95 6.2 110 7.5 112 7.7 120 8.5 129 8.7 135 9.8 150 10.2 180 13

? ? bx ? a 的直线拟合散点图 4 .用方程为 y
中的点,应使得该直线与散点图中的点最接 近。用最小二乘法来求 a 、 b 的原理和方法 见教科书 P72

? ? bx ? a 近似表示的相 5. 能用直线方程 y
关 关 系 叫 做 线 性 相 关 关 系 (linear correlation) 6.设有(x,y)的 n 对观察数据如下:

【解】 在直角坐标系中描出数据的散点图, 直观判断散 点在一直线附近, 故具有线性相关关系, 计算相 应的数据之和:

x
y

x1
y1

x2
y2

x3 y3

… …

xn
yn

?x
i ?1

8

i

? 1031,

?y
i ?1

8

i

? 71.6

1

?x
i ?1

8

2 i

? 137835

?x y
i ?1 i

8

追踪训练
i

? 9611 .7

将它们代入(*)式计算得 b ? 0.0774 , a ? ?1.0241 , 所以,所求线性回归方程为

? ? 0.0774x ? 1.0241 y
例 2 一个车间为了规定工时定额, 需要确定 加工零件所花费的时间 ,为此进行了 10 次 试验,测得数据如下: 零 件 x(个) 数 10 62 60 95 20 68 70 102 30 75 80 108 40 81 90 115 50 89 100 122

1、下列两个变量之间的关系哪个不是函数关系 ( D ) A.角度和它的余弦值 B.正方形边长和面积 C.正n边形的边数和它的内角和 D.人的年龄和身高 2、下面是我国居民生活污水排放量的一组数据
王新敞
奎屯 新疆

(单位: 10 t),试分别估计 1996 年和 2004 年 我国居民生活污水排放量。 年 份 1995 1996 1997 1998 排放量 年 份 151 1999 2000 189.1 2001 194.8 2002

8

加 工 时 间 y(分) 零 件 x(个) 数

加 工 时 间 y(分)

排放量 203.8 220.9 227.7 232.3 解:通过散点图(如下图,EXCEL 制作)可以发现 年份与污水排放量之间具有线性相关关系, 用公 式可求得线性回归方程为: ? =11.447 x-22678 y 8 所以,当 x=1996 时,y=170.2(10 t); 8 当 x=2004 时,y=261.8(10 t).

(1)画出散点图; (2)如果散点图中的各点大致分布在一条直 线的附近,求 y 与 x 之间的线性回归方程。 【解】 (1)
加工时间y(分) 150 100 50 0 0 50 100 150 加工时间 y(分)

(2)由表中数据 ,可以求得:

x ? 55 , y ? 91.7 , ? xi2 ? 38500
i ?1

10

?y
i ?1

10

2 i

? 87777, ? xi yi ? 55950
i ?1

10

将它们代入(*)式计算得

b ? 0.668 , a ? 54.96
因此所求的回归直线方程是

? ? 0.668x ? 54.96 y
2


2015年高中数学 2.4.1线性回归方程学案1 苏教版必修3

2015年高中数学 2.4.1线性回归方程学案1 苏教版必修3_数学_高中教育_教育专区。线性回归方程 第 25 课时【学习导航】 学习要求 1.理解线性回归的基本思想和方法...

2015年高中数学 2.4.2线性回归方程学案2 苏教版必修3

2015年高中数学 2.4.2线性回归方程学案2 苏教版必修3_数学_高中教育_教育专区。线性回归方程 第 26 课时【学习导航】 学习要求 1.进一步了解非确定性关系中两个...

【金版学案】2015-2016学年高中数学 2.4 线性回归方程检测试题 苏教版必修3

【金版学案2015-2016学年高中数学 2.4 线性回归方程检测试题 苏教版必修3_数学_高中教育_教育专区。2.4 线性回归方程 基础巩固 1.下列关系中,是相关关系的有(...

【金版学案】2014-2015学年高中数学苏教版必修三课时训练:2.4 线性回归方程

【金版学案】2014-2015年高中数学苏教版必修三课时训练:2.4 线性回归方程_数学...数学· 必修 3(苏教版) 第2章 2.4 统计 线性回归方程 基础巩固 1.下列关系...

2011年高二数学测试:2.4《线性回归方程》(苏教版必修3))

2011年高二数学测试:2.4线性回归方程》(苏教版必修3))_高中教育_教育专区。...x ? 1 答案:A 4.为了考查两个变量 x 和 y 之间的线性关系,甲、乙两位...

苏教版必修三 2.4.2线性回归方程(1) 教案

具有线性相关关系时,会在散点较长中作出线性直线,会用线性回 归方程进行预测; (3) 知道最小二乘法的含义, 知道最小二乘法的思想,能根据给出的线性回归方程...

高中数学必修三课时训练:2.4 线性回归方程(含答案)

高中数学必修三课时训练:2.4 线性回归方程(含答案)_数学_高中教育_教育专区。高中数学必修三课时训练(含答案) 数学· 必修 3(苏教版) 第 2章 2.4 统计 线性...

【必修三学案】16.线性回归方程

【必修三学案】16.线性回归方程_数学_高中教育_教育专区。高中数学人教A版必修三学案 2.3.2 线性回归方程 教学目标: 1.在两个变量具有线性相关关系时,会在数...

苏教版必修三第2章 统计 2.4

苏教版必修三第2章 统计 2.4_数学_高中教育_教育专区。2.4 线性回归方程 课时...12 8.减少 2.5 解析 ′=3-2.5(x+1)=3-2.5x-2.5= -2.5, 因此,y 的...