nbhkdz.com冰点文库

2015年高中数学 2.4.1线性回归方程学案1 苏教版必修3


线性回归方程 第 25 课时
【学习导航】

学习要求
1.理解线性回归的基本思想和方法,体会 变量之间的相关关系。线性回归方程的 求法。 2.会画出一组数据的散点图,并会通过散 点图判断出这组数据是否具有线性关 系。 【课堂互动】

当 a,b 使 Q ? ( y1 ? bx1 ? a) 2 ?

( y2 ? bx2 ? a) 2 ? ? ? ( yn ? bxn ? a) 2
? ? bx ? a 为拟合这 n 对数 取得最小值时, 就称 y
据 的 线 性 回 归 方 程 (linear regression equation), 将该方程所表示的直线称为回归直 线。 6.用书上的方法 3,可求得线性回归方程

自学评价
在实际问题中,变量之间的常见关系有两 类:一类是确定性函数关系,变量之间的关 系可以用函数表示,另一类是相关关系,变 量之间有一定的联系,但不能完全用函数来 表达 2.建立平面直角坐标系,将数据构成的数对 所表示的点在坐标系内标出,这样的图称为 散点图(scatter diagram) 3.在散点图中如果点散布在一条直线的附 近, 可用线性函数近似地表示 x 和 y 之间的 关系。选择怎样的直线我们有下列思考方 案: (1)选择能反映直线变化的两个点 (2)取一条直线,使得位于该直线一侧和另 一侧点的个数基本相同 (3)多取几组点,确定几条直线方程,再分 别 算出各条直线斜率、截距的平均值,作 为所求直线的斜率、截距

? ? bx ? a 中的系数: y

b?

n? xi yi ? (? xi )(? yi )
i ?1 i ?1

n

n

n

n? xi2 ?(? xi )
i ?1 i ?1

n

n

i ?1 2

a = y ? bx

(*)

7.用回归直线进行拟合的一般步骤为: (1)作出散点图,判断散点是否在一条直线附近 (2)如果散点在一条直线附近,用上面的公式求 出 a,b,并写出线性回归方程 【精典范例】 例 1 下表为某地近几年机动车辆数与交通事故 数的统计资料, 请判断机动车辆数与交通事故数 之间是否具有线性相关关系, 如果具有线性相关 关系, 求出线性回归方程; 如果不具有线性相关 关系,说明理由。 机动车辆 数 x/千台 交通事故 数 y/千件 95 6.2 110 7.5 112 7.7 120 8.5 129 8.7 135 9.8 150 10.2 180 13

? ? bx ? a 的直线拟合散点图 4 .用方程为 y
中的点,应使得该直线与散点图中的点最接 近。用最小二乘法来求 a 、 b 的原理和方法 见教科书 P72

? ? bx ? a 近似表示的相 5. 能用直线方程 y
关 关 系 叫 做 线 性 相 关 关 系 (linear correlation) 6.设有(x,y)的 n 对观察数据如下:

【解】 在直角坐标系中描出数据的散点图, 直观判断散 点在一直线附近, 故具有线性相关关系, 计算相 应的数据之和:

x
y

x1
y1

x2
y2

x3 y3

… …

xn
yn

?x
i ?1

8

i

? 1031,

?y
i ?1

8

i

? 71.6

1

?x
i ?1

8

2 i

? 137835

?x y
i ?1 i

8

追踪训练
i

? 9611 .7

将它们代入(*)式计算得 b ? 0.0774 , a ? ?1.0241 , 所以,所求线性回归方程为

? ? 0.0774x ? 1.0241 y
例 2 一个车间为了规定工时定额, 需要确定 加工零件所花费的时间 ,为此进行了 10 次 试验,测得数据如下: 零 件 x(个) 数 10 62 60 95 20 68 70 102 30 75 80 108 40 81 90 115 50 89 100 122

1、下列两个变量之间的关系哪个不是函数关系 ( D ) A.角度和它的余弦值 B.正方形边长和面积 C.正n边形的边数和它的内角和 D.人的年龄和身高 2、下面是我国居民生活污水排放量的一组数据
王新敞
奎屯 新疆

(单位: 10 t),试分别估计 1996 年和 2004 年 我国居民生活污水排放量。 年 份 1995 1996 1997 1998 排放量 年 份 151 1999 2000 189.1 2001 194.8 2002

8

加 工 时 间 y(分) 零 件 x(个) 数

加 工 时 间 y(分)

排放量 203.8 220.9 227.7 232.3 解:通过散点图(如下图,EXCEL 制作)可以发现 年份与污水排放量之间具有线性相关关系, 用公 式可求得线性回归方程为: ? =11.447 x-22678 y 8 所以,当 x=1996 时,y=170.2(10 t); 8 当 x=2004 时,y=261.8(10 t).

(1)画出散点图; (2)如果散点图中的各点大致分布在一条直 线的附近,求 y 与 x 之间的线性回归方程。 【解】 (1)
加工时间y(分) 150 100 50 0 0 50 100 150 加工时间 y(分)

(2)由表中数据 ,可以求得:

x ? 55 , y ? 91.7 , ? xi2 ? 38500
i ?1

10

?y
i ?1

10

2 i

? 87777, ? xi yi ? 55950
i ?1

10

将它们代入(*)式计算得

b ? 0.668 , a ? 54.96
因此所求的回归直线方程是

? ? 0.668x ? 54.96 y
2


MATLAB一元线性回归方程的计算和检验

MATLAB线性回归方程的计算和检验_理学_高等教育_教育专区。1. 从 input 语句...3.2.命令 rstool 多元二项式回归 .. 命令:rstool(x,y,’model’, alpha) ...

江苏高中数学目录1

按课标要求,每学期两个模块,即: 高一上:必修一、...2.3 对数函数 对数 对数函数 2.4 幂函数 2.5 ...线性回归方程 第 7 章 概率 7.1 随机事件及其...

北师大版(新课标)高中数学必修3第一章统计章末测试题

北师大版(新课标)高中数学必修3章统计章末测试...③线性回归方程最能代表线 性相关的两个变量之间的...采用分层抽样的方 1 4.3 C.2.4 3 4.8 4 6.7 ...

人教版高二数学选修1-2参考资料(学案)

人教版高二数学选修1-2参考资料(学案)_数学_高中教育_教育专区。1.1 回归分析...(3)由经验确定回归方程类型(若呈线性关系,选用线性回归方程);(4)按一定规则...

高二第二学期第一章线性回归方程同步练习题(文科)(1)(...

高二第二学期第线性回归方程同步练习题(文科)(1)(教师版)_数学_高中教育_教育专区。高二第二学期第线性回归方程同步练习题(文科) (1)、选择题 1 ...

高中数学北师大版必修三学业分层测评:第1章 8 最小二乘...

高中数学北师大版必修三学业分层测评:第1章 8 最...+2.3 ^ C.y=-2x+9.5 ^ B.y=2x-2.4 ^ ...试求: 【导学号:63580016】 (1)线性回归方程 y=...

2014-2015高中数学 第1章 相关系数同步练习 北师大版选...

2014-2015高中数学1章 相关系数同步练习 北师大版选修1-2_数学_高中教育_...线性回归方程是:y=7.28601x+200.39416 两个变量的相关系数 r=0.98353 -3-...

2015-2016学年高中数学 1.1回归分析的基本思想及其初步...

2015-2016学年高中数学 1.1回归分析的基本思想及其初步应用课时达标检测 新人教...1 4 3 5 3 6 4 ^ ^ ^ 假设根据上表数据所得线性回归直线方程为y=bx+...

【全程复习方略】2014-2015学年高中数学(人教A版选修1-...

【全程复习方略】2014-2015年高中数学(人教A版选修1-2)练习:1章 统计案例 ...因为 =-2.4, 把样本中心点代入线性回归方程得 =15.4, 所以线性回归方程是 =...

一元线性回归案例

步加强数学的应用意识,培养学生学好数学,用好数学的...我们给出了人教 A 版必修 3 的第二章统计 第三...因此可以用线性回归方程来近似刻画它们之间的关系. 根据...