nbhkdz.com冰点文库

正(余)弦函数的性质(二)


正(余)弦函数的性质(二)
奇偶性单调性与最值

(3)单调性

对于周期函数:

如果我们把握了它的一个周期內的情况;那么 整个函数的情况也就把握了.
y
?4? ?3? ?2?

??

?

?
2
<

br />y ? sin x( x ? R)

o

? 2

?

3? 2

2?

3?

4?

x

y
y ? cos x( x ? R)
?4? ?3? ?2?

??

?

?
2

o

? 2

?

3? 2

2?

3?

4?

x

(3)单调性
我们可以在正弦函数的一个周期的 区间(如[])上讨论它的单调性; ? ? 2 2 2 再利用它的周期性将单调性扩展到 ,
3? x ? ??? 0 ??? ??? ? ??? 2 2 2 sin x ? 1 0 1 0 1

y

? 3?

o

? 2

?

3? 2

x

整个定义域 ?

?

y ? sin x x ? [?

? ?

y
?4? ?3? ?2?

, ]; 2 2

x ?[ , ] 2 2

? 3?

??

?

?
2

y ? sin x( x ? R)

o

? 2

?

3? 2

2?

3?

4?

x

y
?4? ?3? ?2?

??

?

?
2

y ? sin x( x ? R)

o

? 2

?

3? 2

2?

3?

4?

x

? 2k? , ? 2k? ]( k ? Z ) 2 2 正弦函数在每一个闭区间_____________________ 上都是增函数 [?

?

?

其值从 -1增大到1;

? 3? [ ? 2 k? , ? 2k? ](k ? Z ) 2 2 在每一个闭区间_______________________ 上都是减函数;

其值从1减小到 -1.

y
y ? cos x( x ? R)
?4? ?3? ?2?

??

?

?
2

o
y

? 2

?

3? 2

2?

3?

4?

x x

y ? cos x( x ? R)
o
? 2

?4?

?3?

?2?

??

?

?
2

?

3? 2

2?

3?

4?

[?? ? 2k? , 2k? ](k ? Z ) 余弦函数在每一个闭区间____________________上都是增函数
其值从 -1增大到1;

[2k? , ? ? 2k? ](k ? Z ) 在每一个闭区间____________________上都是减函数;

其值从1减小到 -1

(4)最大值与最小值
?4? ?3? ?2?

y
??
?

?
2

y ? sin x( x ? R)

o

? 2

?

3? 2

2?

3?

4?

x

y
?4? ?3? ?2?

y ? cos x( x ? R)

??

?

?
2

o

? 2

?

3? 2

2?

3?

x4?

? (k ? Z ) 正弦函数当且仅当x ? _____________ 时取得最大值1; 2
2k? ?

2k? (k ? Z ) 余弦函数当且仅当x ? _____________ 时取得最大值; k? ? ? (k ? Z ) 时取得最小值. 当且仅当x ? 2 _____________

2k? ? ( k ? Z ) 取得最小值. 当且仅当时x ? _____________ 2

?

例题讲解:

例1:下列函数有最大值最小值吗?如果有,请写出取 最大值.最小值时的自变量x的集合并说出最大值, 最小值分别什么. (1) y ? cos x ? 1;(2) y ? ?3sin 2 x.

例题讲解:
例2:利用三角函数的单调性比较下列各组数的大小. 23? 17? (1) sin(- )与 sin( ? );(2) cos( ? )与 cos( ? ). 18 10 5 4 1 3 (3) sin 与 cos 10 2

?

?

例题讲解:

1 ? 例3:已知函数y ? sin( x ? ),x ? R 2 3 (1)求该函数的对称中心与对称轴。 (2)求该函数的单调递增区间.
1 ? 变式: 求函数y ? sin( x ? ), x ? [?2? , 2? ]的单调递增区间. 2 3

思考: 1 你能求y ? sin( ? x), x ? [-2? , 2? ]的单调递增区间吗? 3 2

?

小结:
1、掌握利用三角函数的单调性求最值和比较大小。 2、会求函数的对称中心与对称轴。 3、会求三角函数的单调区间。

课后作业: 1.请同学们课后阅读课本P41-----------利用单 位圆中的三角函数线研究正弦函数、余弦函数 的性质。 2.试比较利用图像与利用三角函数线研究正弦 函数、余弦函数性质这两种方法的优缺点。

1.观察正弦曲线和余弦曲线写出满足下列条件的区间

(1)sin x ? 0 (2)sin x ? 0
(3) cos x ? 0 (4) cos x ? 0

(2k? , 2k? ? ? )(k ? Z )
(2k? ? ? , 2k? )(k ? Z )
(2k? ? , 2k? ? )(k ? Z ) 2 2 ? 3? (2k? ? , 2k? ? )(k ? Z ) 2 2

?

?

y

?4?

?3?

?2?

??

?

?
2

y ? sin x( x ? R)

o

? 2

?

3? 2

2?

3?

4?

x

y
y ? cos x( x ? R)
?4? ?3? ?2?

??

?

?
2

o

? 2

?

3? 2

2?

3?

4?

x

例求下列函数取得最大值,最小值的自变量的集合;并写出最大值, 最小值是什么.

? 3 1 ? ? (1) y ? 3sin(2 x ? ), x ? R;(2) y ? ? cos( x ? );(3) y ? 3sin( ? 2 x) 4 2 2 6 3
解(1)当2 x ?

?
4

? 2 k? ?

?
2

即x ? k? ?

?

时y ? 3sin(2 x ? )有最大值, 8 4

?

?函数y取得最大值时x ?{x | x ? k? ?

?
8

, k ? Z }, y的最大值为3

3? ? ?当2 x ? ? 2k? ? 即x ? k? ? 时y ? 3sin(2 x ? )有最小值, 4 2 8 4

?

?

3? 函数y取得最小值时x ? {x | x ? k? ? , k ? Z }, y的最小值为 - 3. 8

例求下列函数取得最大值,最小值的自变量的集合;并写出最大值, 最小值是什么.

? 3 1 ? ? (1) y ? 3sin(2 x ? ), x ? R;(2) y ? ? cos( x ? );(3) y ? 3sin( ? 2 x) 4 2 2 6 3
1 ? 5? 3 1 ? 解(2)当 x ? ? 2k? ? ? 即x ? 4k? ? 时y ? ? cos( x ? )有最大值, 2 6 3 2 2 6

3 ?函数y取得最大值时x ? {x | x ? 4k? ? , k ? Z }, y的最大值为 3 2 1 ? ? 3 1 ? ?当 x ? ? 2k? 即x ? 4k? ? 时y ? ? cos( x ? )有最小值, 2 6 3 2 2 6

?

函数y取得最小值时x ? {x | x ? 4k? ?

?

3 , k ? Z }, y的最小值为 ? . 3 2

例求下列函数取得最大值,最小值的自变量的集合;并写出最大值, 最小值是什么.

? 3 1 ? ? (1) y ? 3sin(2 x ? ), x ? R;(2) y ? ? cos( x ? );(3) y ? 3sin( ? 2 x) 4 2 2 6 3 ? ? 解(1) y ? 3sin( ? 2 x) ? ?3sin(2 x ? ) 3 3 ? ? ? ? 当2 x ? ? 2k? ? 即x ? k? ? 时y ? 3sin(2 x ? )有最大值, 3 2 12 3
?函数y取得最大值时x ? {x | x ? k? ?

?
12

, k ? Z }, y的最大值为3

5? ? ?当2 x ? ? 2k? ? 即x ? k? ? 时y ? 3sin(2 x ? )有最小值, 3 2 12 3

?

?

函数y取得最小值时x ? {x | x ? k? ?

5? , k ? Z }, y的最小值为 - 3. 12

?4?

?3?

?2?

??

?

?
2

y ? sin x( x ? R)

o
y

? 2

?

3? 2

2?

3?

4?

x

y ? cos x( x ? R)
?4? ?3? ?2?

??

?

?
2

o

? 2

?

3? 2

2?

3?

4?

x


正弦函数、余弦函数的性质(二)教案

3. 情感目标 (1)经历三角函数性质的探讨过程,感受研究函数性质的一般思路与方法。 【重点难点】 重点 正弦函数、余 今日推荐 78份文档 ...

正弦、余弦函数的性质题型

sin( x ?? )(? ? [0,2? ]) 是偶函数,则 ? =___. 3 8..若函数 f ( x) ? cos( ?x ? ? 6 ) w>0 的最小正周期为 ? ,则 w=___ 5...

第一章 1.4.2正弦余弦函数的性质(2)

第一章 1.4.2正弦余弦函数的性质(2)_数学_自然科学_专业资料。第一章 1.4.2 正弦函数和余弦函数的性质(2) 学习目标: 1. 理解正、余弦函数的周期性、奇偶...

正弦函数、余弦函数的性质(二)

(ωx+φ)的单调区间. 正弦函数、余弦函数的性质: 函数 y=sin x 图象 定义域 值域 奇偶性 周期性 ___ ___ ___ 最小正周期:___ 在 ___ 上单调递增...

1.4.2正弦函数余弦函数的性质

.2 正弦、余弦函数的性质(一) 【教学目标】:(1)理解周期函数,周期函数的周期...2.观察正(余)弦函数的图象总结规律: 自变量 也即:(1)当自变量 x 增加 2k?...

第一章 1.4.2正弦余弦函数的性质(1)

第一章 1.4.2正弦余弦函数的性质(1)_数学_自然科学_专业资料。第一章 1.4.2 正弦函数和余弦函数的性质(1) 学习目标: 1. 理解正、余弦函数的定义域、值域...

1.4.2正余弦函数的性质(一)教案设计

教学目的:知识目标:理解周期函数,周期和最小正周期的定义。 能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周 期。 德育目标:...

《正弦函数、余弦函数的性质(第2课时)》教学教案 (1)

1.4.2 正弦、余弦函数的性质学习目的: 1、要求学生能理解三角函数的奇、偶性和单调性; 2、掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区 ...

正余弦函数的图像与性质

正弦函数与余弦函数的图像与性质一、三角函数的定义域、值域 1、函数 y ? sin x 的定义域为___ 2、函数 y ? 1 的定义域是___ lg ?1 ? 2sin x ? ...

1.4.2正弦函数、余弦函数性质导学案(2)

1.4.2正弦函数、余弦函数性质导学案(2)_高一数学_数学_高中教育_教育专区。贵有恒,何必三更起五更眠。最无益,只怕一日曝十日寒。 编号:gswhsxbx4--010 文华...