nbhkdz.com冰点文库

高中数学 《参数方程的概念》教案 新人教A版选修4-4


参数方程
目标点击:
1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆 锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题.

基础知识点击:<

br />1、曲线的参数方程 在取定的坐标系中, 如果曲线上任意一点的坐标 x,y 都是某个变数 t 的函 数, ?
? x ? f (t ) ? y ? g (t )

(1) 并且对于 t 的每一个允许值, 由方程组(1)所确定的点 M(x,y)

都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系 x、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点 M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与 x,y 的关系 式,并由此分别解出用参数表示的 x、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线 C 上任一点的坐标(x,y)的方程 F(x,y)=0 叫做曲线 C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点 P0( x 0 , y 0 ),倾斜角为 ? 的直线的参数方程是
? ? x ? x0 ? t c o s ? ? ? y ? y0 ? t s i n

(t 为参数)t 的几何意义:t 表示有向线段 P0 P 的数量,P( x , y )
为直线上任意一点.

(ⅱ)过点 P0( x 0 , y 0 ),斜率为 k ?
? x ? x 0 ? at ? ? y ? y 0 ? bt

b a

的直线的参数方程是

(t 为参数)

(2)圆的参数方程

1

(ⅰ)圆 x 2 ? y 2 ? r 2 的参数方程为 ?

? x ? r cos ? ? y ? r sin ?

( ? 为参数) ? 的几何意义为“圆心角”

(ⅱ)圆 ( x ? x 0 ) 2 ? ( y ? y 0 ) 2 ? r 2 的参数方程是
? ? x ? x0 ? r c o s ( ? 为参数) ? 的几何意义为“圆心角” ? ? ? y ? y0 ? r s i n

(3)椭圆的参数方程 (ⅰ)椭圆 (ⅱ)椭圆
x a
2 2

?

y b
2

2 2

? x ? a cos ? ? 1 ( a ? b ? 0 ) 的参数方程为 ? ? y ? b sin ?
2

( ? 为参数)

( x ? x0 ) a

?

( y ? y0 ) b
2

2

? 1 ( a ? b ? 0 )的参数方程是

? ? x ? x0 ? a c o s ? ? ? y ? y0 ? b s i n

( ? 为参数) ? 的几何意义为“离心角”

(4)双曲线的参数方程 (ⅰ)双曲线 (ⅱ)双曲线
x a
2 2

?

y b
2

2 2

? x ? a sec ? ? 1 的参数方程为 ? ? y ? btg ?
2

( ? 为参数)

( x ? x0 ) a

?

( y ? y0 ) b
2

2

? 1 的参数方程是

? ? x ? x0 ? a s e c ? ? ? y ? y0 ? b t g

( ? 为参数) ? 的几何意义为“离心角”

(5) 抛物线的参数方程 2 y ? 2 px (p>0) 的参数方程为
? x ? 2 pt 2 (t 为参数) ? ? y ? 2 pt

其中 t 的几何意义是抛物线上的点与原点连线的斜
率的倒数(顶点除外).

考点简析:参数方程属每年高考的必考内容,主要考查基础知识、基本技能,
从两个方面考查(1)参数方程与普通方程的互化与等价性判定; (2)参数方程 所表示的曲线的性质. 题型一般为选择题、填空题.

一、 参数方程的概念
一)目标点击:
1、理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标; 2、熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3、能掌握消去参数的一些常用技巧:代人消参法、三角消参等; 4、能了解参数方程中参数的意义,运用参数思想解决有关问题;

二)概念理解:
2

1、例题回放: 问题 1: (请你翻开黄岗习题册 P122,阅读例题) 已知圆 C 的方程为 ( x ? 2 ) 2 ? y 2 ? 1 ,过点 P1(1,0) 作圆 C 的任意弦, 交圆 C 于另一点 P2,求 P1P2 的中点 M 的轨迹方程. 书中列举了六种解法, 其中解法六运用了什么方法求得 M 点的轨迹方程? 此种方法是如何设置参数的,其几何意义是什么? 设 M( x , y )
2 ? k ?2 x ? ? 2 ? 1? k ,由 ? k ?y ? 2 ? 1? k ?

,消去 k,得 ( x ? ) 2 ? y 2 ?
2

3

1 4

,因 M 与

P1 不重合,所以 M 点的轨迹方程为 ( x ? ) 2 ? y 2 ?
2

3

1 4

(x ? 1)

解法六的关键是没有直接寻求中点 M 的轨迹方程 F ( x , y ) ? 0 ,而是通过引入 第三个变量 k(直线的斜率) ,间接地求出了 x 与 y 的关系式,从而求得 M 点的
2 ? k ?2 x ? ? 2 ? 1? k 轨迹方程.实际上方程 ? k ?y ? 2 ? 1? k ?

(1)和 ( x ? ) 2 ? y 2 ?
2

3

1 4

(x ? 1) (2)都表示

同一个曲线,都是 M 点的轨迹方程.这两个方程是曲线方程的两种形式. 方程组(1)是曲线的参数方程,变数 k 是参数,方程(2)是曲线的普通方程. 由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参 数方程并不陌生, 在求轨迹方程的过程中,我们通过设参变量 k,先求得曲线的参 数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简 捷、有效的方法. 问题 2:几何课本 3.1 曲线的参数方程一节中,从研究炮弹发射后的运动规律, 得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意 义是什么?参数的取值范围? 通过研究炮弹发射后弹道曲线的方程说明: 1)形如 ?
? x ? f (t ) ? y ? g (t )

的方程组,描述了运动轨道上的每一个位置( x , y )

和时间 t 的对应关系. 2)我们利用 “分解与合成” 的方法研究和认识了形如 ? 质点的运动规律. 3)参数 t 的取值范围是由 t 的物理意义限制的. 2、曲线的参数方程与曲线 C 的关系 在选定的直角坐标系中,曲线的参数方程 ?
? x ? f (t ) ? y ? g (t ) ? x ? f (t ) ? y ? g (t )

的方程组表示

t?

D

(*)与曲线

C 满足以下条件: (1)对于集合 D 中的每个 t0,通过方程组(*)所确定的点( f ( t 0 ), g ( t 0 ) ) 都在曲线 C 上;

3

(2)对于曲线 C 上任意点( x 0 , y 0 ) ,都至少存在一个 t0,满足 ? 则 曲线 C
?

? x 0 ? f (t 0 ) ? y 0 ? g (t 0 )

参数方程 ?

? x ? f (t ) ? y ? g (t )

t?

D

3、曲线的普通方程与曲线的参数方程的区别与联系 曲线的普通方程 F ( x , y ) =0 是相对参数方程而言, 它反映了坐标变量 x 与 y 之间的直接联系; 而参数方程 ?
? x ? f (t ) ? y ? g (t )

t ? D 是通过参数 t 反映坐标变量 x 与 y 之

间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多 1;

曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多 1 个.从 这个意义上讲,曲线的普通方程和参数方程是“一致”的. 参数方程 消去参数 普通方程 ; 普通方程 恰当选择参数 这时普通方程和参数方程是同一曲线的两种不同表达形式. 问题 3:方程 x ? y ? a ( a ? 0 ) ;方程
2 2 2

参数方程

x a

2 2

?

y b

2 2

? ? ( ? ? 0 )是参数方程吗?

参数方程与含参数的方程一样吗? 方程 x 2 ? y 2 ? a 2( a ? 0 ) 表示圆心在原点的圆系, 方程 表示共渐近线的双曲线系。 曲线的参数方程 ?
? x ? f (t ) ? y ? g (t )

x a

2 2

?

y b

2 2

? ?( ? ? 0 )

(t 为参数,t ?

D

)是表示一条确定的曲线;

含参数的方程 F ( x , y , t ) =0 却表示具有某一共同属性的曲线系,两者是有原 则区别的.

三)基础知识点拨:
例 1:已知参数方程 ? 程的曲线上. 解:把 A、B 两点坐标分别代入方程得 ? [0,2 ? )内,方程组(1)的解是 ? ? 而 B 点不在方程的曲线上. 1、参数方程化普通方程 例 2:化参数方程 ? 么图形.
? x ? ? 4t 2 解: ? ?y ? t ?1 (1) (2) ? x ? ? 4t 2 ? y ? t ?1
? 1 ? 2 cos ? ? 3 ? 2 sin ? ? x ? 2 cos ? ? y ? 2 sin ?

? ? [0,2 ? )判断点 A(1, 3 )和 B(2,1)是否在方

(1), ?

? 2 ? 2 cos ? ? 1 ? 2 sin ?

(2),在

?
3

,而方程组(2)无解,故 A 点在方程的曲线上,

(t≥0,t 为参数)为普通方程,说明方程的曲线是什

由(2)解出 t,得 t=y-1,代入(1)中,得 x ? ? 4 ( y ? 1) 2

4

(y≥1)即 ( y ? 1) 2 ? ?

1 4

x

(y≥1)方程的曲线是顶点为(0,1),对称轴平行于 x 轴,

开口向左的抛物线的一部分. 点拨:先由一个方程解出 t,再代入另一个方程消去参数 t,得到普通方程,这 种方法是代入消参法. 例 3:当 t ? R
? 8t ? ?x ? 4 ? t2 ? 时,参数方程 ? 2 4?t ?y ? 2 ? 4?t ?

(t 为参数) ,表示的图形是( 抛物线
(1)



A

双曲线

B 椭圆

C

D



? 8t ? ? x ? 4 ? t2 解法 1:原方程可化为 ? 8 ?y ?1 ? 2 4?t ?

(1)÷(2)得:代入(2)
(2)



x

2

? y

2

? 1 (y≠-1)

答案选 B

4
t ? (?2) ? 2( ) ? 2 ?x ? t 2 ? 1? ( ) 2: ? 2 ? t 2 ? 1? ( ) 2 ? y ?1? ? t 2 1? ( ) ? 2 ?

解法

令 tg ? = (? ? k ? ?
2

t

?
2

k ? Z)

则?

? x ? ? 2 sin 2? ? y ? cos 2?

消去 ? ,得

x

2

? y

2

? 1 (y≠-1)

4

点拨:解法 1 使用了代数消元法,解法 2 观察方程(1)(2)的“外形”很像 、 三角函数中的万能公式,使用了三角消参法. 当 x 和 y 是 t 的有理整函数时,多用代入或加减消元法消去参数; 当 x 和 y 是 t 的有理分式函数时,也可以用代入消参法,但往往需要做 些技巧性的处理.至于三角消参法,只在比较巧合的情况下使用. 例 4:将下列方程化为普通方程: (1)
? ? ? ? x ? cos ? sin ? 2 2 ? 1 ? y ? (1 ? sin ? ) ? 2 ?

( ? 为参数)
?
2

(2)

t ? e ?x ? ? ? t e ? y ? ? ?

?e 2 ?e 2

?t

?t

(t 为参数)

解:(1)做 x 2 ? 2 y =(cos2
x ? 2y
2

+sin2

?
2

+sin ? )-(1+sin ? )=0
2 sin( ? ?

=0,但由于 x ?

?
4

)

,即 0≤ x ≤ 2 .
2

∴参数方程只表示抛物线的一部分,即 x ? 2 y (0≤ x ≤ 2 )

(2)解方程组得 x ? y ? e t (1) 从 x?
e ?e
t ?t

x? y ?e

?t

(2)

(1)×(2)得 x 2 ? y 2 =1

知 x ≥1(提示应用均值定理)
5

2

所求的普通方程为 x 2 ? y 2 =1 ( x ≥1) 点拨:(1)从方程组的结构看含绝对值,三角函数,通过平方去绝对值,利用三 角消参法化为普通方程; (2)观察方程组的结构,先利用消元法,求出 e t , e ? t ,再消 t. 方法总结:将参数方程化普通方程方法: (基本思想是消参) (1)代入消参法; (2)代数变换法(+,-,×,÷,乘方) (3)三角消参法 注意:参数取值范围对 x , y 取值范围的限制.(参数方程与普通方程的等价性) 2、普通方程化参数方程 例 5:设 y ? ? 1 ? sin ? ,为参数,化方程 x 2 ? 4 y 2 ? 2 x ? 8 y ? 1 ? 0 为参数方程。 解: ?
2

?x2 ? y 2 ? 2x ? 8 y ? 1 ? 0 ? y ? ? 1 ? sin ?
2

消y得

x ? 4 (1 ? 2 sin ? ? sin ? ) ? 2 x ? 8 ? 8 sin ? ? 1 ? 0

∴ x ? 1 ? 2 cos ? , 或 x ? 1 ? 2 cos ? 由于 ? ? R, 所以 x ? 1 ? 2 cos ? , 或 x ? 1 ? 2 cos ? 和所确定的 x 取值范围是一致的, 故主要任选其一构成参数方程即可.
? x ? 2 x ? 4 sin ? ? 3 ? 0 ? ( x ? 1) ? 4 cos ?
2 2
2 2

所求的参数方程为 ? x ?

? 1 ? 2 cos ?

? y ? ? 1 ? sin ?

? ?R

例 6:以过点 A(0,4)的直线的斜率 k 为参数,将方程 4 x 2 ? y 2 =16 化成参数的 方程是 . 解:设 M( x , y )是椭圆 4 x 2 ? y 2 =16 上异于 A 的任意一点,则
y?4 x ? k



( x ≠0)以 y ? kx ? 4 代入椭圆方程,得 x[( 4 ? k 2 ) x ? 8 k ] =0,
8k ? x ? ? 2 ? 4?k ∴? ? 2 16 ? 4 k ? y ? kx ? 4 ? 2 ? 4?k ?

另有点 ?

? x ? 0 ? y ? ?4
8k ? ?x ? ? 4? k2 ? ? 2 16 ? 4 k ?y ? 2 ? 4?k ?

∴所求椭圆的参数方程为

或?

? x ? 0 ? y ? ?4

方法总结:将普通方程化参数方程方法:
已知 ?
? x ? f (t ) ? F ( x, y ) ? 0
消去 x

y ? ? (t )

? x ? f (t ) ? ? y ? ? (t )

四)基础知识测试:
1、曲线 ? A
?x ? 1? t2 ? y ? 4t ? 3

(t 为参数)与 x 轴交点的坐标是( B (
25 16

) D (±
25 16

(1,4)

,0)

C

(1,-3) )

,0)

?x ? 1? t2 ? t4 2、在曲线 ? (t 为参数)上的点是( 3 ? y ? t ? 3t ? 2

6

A

(0,2)
? ?

B
x ?

(-1,6)
2

C

(1,3)

D

(3,4) )

3、参数方程 ? A 直线

sin 2? ? y ? tg ? ? ctg ? ?

( ? 为参数)所表示的曲线是( C 椭圆 D 双曲线

B

抛物线

4、与参数方程 ? A ? C

? x ? t ?y ? 1? t

(t 为参数, t ? R)表示同一曲线的方程是( B D



?x ? 1 ? t ? y ?t

(t 为参数, t ? R) ( ? 为参数, ? ? R)

? x ? sin ? ? ? y ? 1 ? sin ?

? x ? t2 (t 为参数, t ? R) ? 2 ?y ? 1? t ? x ? 2 cos t (t 为参数, t ? R) ? ? y ? 2 sin t

5、曲线 xy ? 1 (0< x <1)的参数方程是( A
? x ? tg ? ? ? y ? ctg ? ? x ? sin ?


?x ?t ? 1 B ? y ? ? t ?

( ? 为参数, ? ?

k? 2

,k ? Z)

(t 为参数, t≠0)

C ?

? y ? 1 ? csc ? ? x ? cos ? ? y ? sec ?

( ? 为参数, ? 为锐角)
?
2

D ?

( ? 为参数, ? ? k ? ?

, k ? Z)

6、根据所给条件,把下列方程化为参数方程: (1) xy ? a 2 ,设 x ? atg ? , ? 是参数, a 为正常数; (2) y 2 ? 4 x 2 ? 5 x 3 , y ? tx , t 为参数; (3) 4 x 2 ? y 2 ? 16 x ? 12 ? 0 , y ? 2 sin ? , ? 是参数. 7、已知动圆方程 x 2 ? y 2 ? x ? sin 2? ? 2 2 y sin( ? ?
?
4 )? 0

( ? 为参数)

那么圆心轨迹是( ) A 椭圆 B 椭圆的一部分 C 抛物线 D 抛物线的一部分 2 2 8、 (提高)已知曲线系 C 的方程 16x +4y -32xcos ? -16ysin2 ? -4sin22 ? =0( ? 为任意值)求曲线系中各条曲线中心的轨迹.

五)同步练习:
1、解析几何习题册:P46,一 参数方程 2、黄冈习题册:P156、演练平台;P157 演练平台.

7


高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的...

高中数学选修4-4坐标系与参数方程完整教案

高中数学选修4-4坐标系与参数方程完整教案_数学_...3sin 2 x ?二、新课讲解: 定义:设P(x,y)是...(2015版)人教A版高中数学... 33页 1下载券 人教...

高中数学选修4-4坐标系与参数方程完整教案

高中数学选修4-4坐标系与参数方程完整教案_数学_...教案 3 极坐标系的的概念(1 课时) 教案 4 极坐标...高中数学新课标人教A版选... 暂无评价 34页 1下载...

高二数学选修4-4__参数方程概念

高二数学选修4-4__参数方程概念_高二数学_数学_高中教育_教育专区。高中数学选修4-4参数方程 高二数学选修 4-4 练习题一、选择题: 1.曲线的极坐标方程 ? ? ...

高二数学北师大版选修4-4《参数方程的概念》教案

高二数学北师大版选修4-4《参数方程的概念》教案_数学_高中教育_教育专区。石泉...y 500 v=100m/s A O x 2.你能说说下面这个方程的特征吗? (1)有几个...

人教版高中数学选修4-4坐标系与参数方程全套教案

人教版高中数学选修 4-4 坐标系与参数方程全套教案课型: 复习课 班级: 课时数: 1 学号: 讲学时间: 2010 年 1 月 18 号 姓名: 一、 【学习目标】 : 1...

高中数学 4.4.7参数方程的概念教案 新人教版选修4

高中数学 4.4.7参数方程的概念教案 新人教版选修4_数学_高中教育_教育专区。第二章 【课标要求】 参数方程 1、了解抛物运动轨迹的参数方程及参数的意义。 2、...

高中数学 选修4-4 5.参数方程的概念

高中数学 选修4-4 5.参数方程的概念_数学_高中教育_教育专区。高中数学,选修4-4,导学案5.参数方程的概念教学目标 ___ 1.了解参数方程的概念. 2.掌握参数方程...

(2015版)人教A版高中数学选修4-4坐标系与参数方程全册完整教案

人教A 版高中数学选修 4-4 坐标系与参数方程全册完整教案 (2015 最新版)一 第一讲 坐标系 平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:...