nbhkdz.com冰点文库

2.3 数学归纳法(1)


一、归纳法:对于某类事物,由它 的一些特殊事例或其全部可能情况, 归纳出一般结论的推理方法,叫归 纳法。
归纳法

{ 不完全归纳法
一般

完全归纳法

特点: 由特殊

如何证明:1+3+5+…+(2n-1)=n2

(n∈N*)

二、数学归纳法的概念:
证明某些与自然数有关的数学题,可用下列方法 来证明它们的正确性: (1)验证当n取第一个值n0(例如n0=1)时命题成立, (2)假设当n=k(k?N* ,k?n0 )时命题成立, 证明当n=k+1时命题也成立 完成这两步,就可以断定这个命题对从n0开始的所 有正整数n都成立。这种证明方法叫做数学归纳法。 验证n=n0时命 题成立 若当n=k(k?n0 )时命题成立, 证明当n=k+1时命题也成立

命题对从n0开始的所 有正整数n都成立。

例:已知数列{a n }为等差,公差为d,
求证:通项公式为a n = a1 +(n -1)d 证明:

1)当n = 1式,a1 = a1 +(1-1)d = a1 ,结论成立
2)假设n = k式结论成立,即a k = a1 +(k -1)d ? ∵ a k+1 = a k + d 那么 ∴ ?a k+1 = a1 +(k -1)d + d ? ? = ? a1 + kd = a1 +[(k +1)-1]d ? ? 所以n=k+1时结论也成立 综合1)、2)知a n = a1 +(n -1)d成立.

练习:已知数列{a n }为等比数列, 公比为q,求证:通项公式为a n = a1q (提示:a n = qa n-1)
n-1

例1、用数学归纳法证明1+3+5+……+(2n-1)=n2
?

(n∈N )

?

证明:①当n=1时,左边=1,右边=1,等式成立。 ②假设n=k(k∈N ,k≥1)时等式成立,即: 1+3+5+……+(2k-1)=k2, 当n=k+1时: 1+3+5+……+(2k-1)+[2(k+1)-1]=k2+2k+1=(k+1)2, 所以当n=k+1时等式也成立。 由①和②可知,对n∈N ,原等式都成立。
?

请问: 第②步中“当n=k+1时”的证明可否改换为:

1+3+5+……+(2k-1)+[2(k+1)-1]= 1+3+5+……+(2k-1)+(2k+1)
?

= (k +1)[1+ (2k +1)] = (k+1)2 ?为什么?
2

例2:用数学归纳法证明
2 2 2 2

n(n +1)(2n +1) 1 + 2 + 3 +?+ n = 6

例、求证:(n+1)(n+2)…(n+n)=2n? 1? 3?… ?(2n-1)
证明:① n=1时:左边=1+1=2,右边=21?1=2,左边=右边,等 式成立。 ? ② 假设当n=k((k∈N )时有: (k+1)(k+2)…(k+k)=2k? 1? 3?…? (2n-1), 当n=k+1时: 左边=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
( 2k+1)(2k+2) =(k+1)(k+2)(k+3)…(k+k)? k+1

= 2k? 1? 3?…?(2k-1)(2k+1)?2 = 2k+1?1? 3?…? (2k-1) ?[2(k+1)-1]=右边, ∴当n=k+1时等式也成立。 ? 由 ①、②可知,对一切n∈N ,原等式均成立。


2.3 数学归纳法(1)

第二章 推理与证明编写人: 2.3 数学归纳法(1) 编号:007 学习目标 1、理解数学归纳法的概念,掌握数学归纳法的证明步骤。 2、通过数学归纳法的学习,体会用不完...

《2.3.1数学归纳法》导学案

2.3.1数学归纳法》导学案_高二数学_数学_高中教育_教育专区。高二年级数学导学案 § 2.3 数学归纳法学习目标 1. 了解数学归纳法的意义,培养学生观察、归纳...

编号34 2.2.3 数学归纳法1

编号34 2.2.3 数学归纳法1_高二数学_数学_高中教育_教育专区。曹县三中高二数学理导学案 编号 34 制作:高洪梅 2.3 数学归纳法(1) 审核:高二数学组 2017....

2014年高三一轮专题复习数学归纳法(有详细答案)

++ ( × ) (5)用数学归纳法证明等式“1+2+22+?+2n 2=2n 3-1”, 验证 n=1 时, 左边式子应为 1+2+22+23.( √ ) (6)用数学归纳法证明凸 n ...

选修(2-2)2.3数学归纳法

时间:两课时山东省桓台第一中学 课题:选修(2-2)2.3 数学归纳法三维目标: 1、知识与技能 (1) 通过实例及合作探究,了解数学归纳法的产生过程,并理解数学归纳法...

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k...

单选题 数学 数学归纳法证明不等式 用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是( ) A2k+2 B2k+3...

【江苏数学3年高考2年模拟1年原创试题】必做05 数学归...

【江苏数学3年高考2年模拟1年原创试题】必做05 数学归纳法_高三数学_数学_高中教育_教育专区。理科必做题专题 5 【三年高考】 1. 【2015 江苏高考,23】 已知...

...数学(新课标人教A版)选修2-2《2.3.1数学归纳法》导...

高中新课程数学(新课标人教A版)选修2-2《2.3.1数学归纳法》导学案_数学_高中教育_教育专区。§ 2.3 数学归纳法(1) 学习目标 1. 了解数学归纳法的原理,并...

用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k...

数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( ) Ak2+1 B(k+1)2 C D(k2+1)+(k2+2)+(k2+3)+…+(k+1)2 ...

新课标人教A版选修2-2《2.3.1数学归纳法及其应用举例》...

新课标人教A版选修2-2《2.3.1数学归纳法及其应用举例》获奖教学设计(含教学设计说明)_高二数学_数学_高中教育_教育专区。《数学归纳法及其应用举例》教学设计重庆...