nbhkdz.com冰点文库

2.3 数学归纳法(1)


一、归纳法:对于某类事物,由它 的一些特殊事例或其全部可能情况, 归纳出一般结论的推理方法,叫归 纳法。
归纳法

{ 不完全归纳法
一般

完全归纳法

特点: 由特殊

如何证明:1+3+5+…+(2n-1)=n2

(n∈N*)

二、数学归纳法的概念:
证明某些与自然数有关的数学题,可用下列方法 来证明它们的正确性: (1)验证当n取第一个值n0(例如n0=1)时命题成立, (2)假设当n=k(k?N* ,k?n0 )时命题成立, 证明当n=k+1时命题也成立 完成这两步,就可以断定这个命题对从n0开始的所 有正整数n都成立。这种证明方法叫做数学归纳法。 验证n=n0时命 题成立 若当n=k(k?n0 )时命题成立, 证明当n=k+1时命题也成立

命题对从n0开始的所 有正整数n都成立。

例:已知数列{a n }为等差,公差为d,
求证:通项公式为a n = a1 +(n -1)d 证明:

1)当n = 1式,a1 = a1 +(1-1)d = a1 ,结论成立
2)假设n = k式结论成立,即a k = a1 +(k -1)d ? ∵ a k+1 = a k + d 那么 ∴ ?a k+1 = a1 +(k -1)d + d ? ? = ? a1 + kd = a1 +[(k +1)-1]d ? ? 所以n=k+1时结论也成立 综合1)、2)知a n = a1 +(n -1)d成立.

练习:已知数列{a n }为等比数列, 公比为q,求证:通项公式为a n = a1q (提示:a n = qa n-1)
n-1

例1、用数学归纳法证明1+3+5+……+(2n-1)=n2
?

(n∈N )

?

证明:①当n=1时,左边=1,右边=1,等式成立。 ②假设n=k(k∈N ,k≥1)时等式成立,即: 1+3+5+……+(2k-1)=k2, 当n=k+1时: 1+3+5+……+(2k-1)+[2(k+1)-1]=k2+2k+1=(k+1)2, 所以当n=k+1时等式也成立。 由①和②可知,对n∈N ,原等式都成立。
?

请问: 第②步中“当n=k+1时”的证明可否改换为:

1+3+5+……+(2k-1)+[2(k+1)-1]= 1+3+5+……+(2k-1)+(2k+1)
?

= (k +1)[1+ (2k +1)] = (k+1)2 ?为什么?
2

例2:用数学归纳法证明
2 2 2 2

n(n +1)(2n +1) 1 + 2 + 3 +?+ n = 6

例、求证:(n+1)(n+2)…(n+n)=2n? 1? 3?… ?(2n-1)
证明:① n=1时:左边=1+1=2,右边=21?1=2,左边=右边,等 式成立。 ? ② 假设当n=k((k∈N )时有: (k+1)(k+2)…(k+k)=2k? 1? 3?…? (2n-1), 当n=k+1时: 左边=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
( 2k+1)(2k+2) =(k+1)(k+2)(k+3)…(k+k)? k+1

= 2k? 1? 3?…?(2k-1)(2k+1)?2 = 2k+1?1? 3?…? (2k-1) ?[2(k+1)-1]=右边, ∴当n=k+1时等式也成立。 ? 由 ①、②可知,对一切n∈N ,原等式均成立。


2.3数学归纳法

2.3 数学归纳法教学目标 1.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操 作步骤. 2.抽象思维和概括能力进一步得到提高. 教学重点与难点 重点...

2.3.1数学归纳法二

班级: 姓名: 学号: 3.2.2 数学归纳法(二) 一 学习目标:熟练应用数学归纳法证明题目 二:课前案:数学归纳法:一个与自然数相关的命题,如果(1) (2) 例 3...

2.3数学归纳法(1) 训练案

课题 时间 课时训练 2.3 数学归纳法(1) 制作 自主探究 课时训练案 审核 课型 习题课 一、基础过关 1. 某个命题与正整数有关,如果当 n=k(k∈N*)时,该...

2.3 数学归纳法(1)

第二章 推理与证明编写人: 2.3 数学归纳法(1) 编号:007 学习目标 1、理解数学归纳法的概念,掌握数学归纳法的证明步骤。 2、通过数学归纳法的学习,体会用不完...

2.3 数学归纳法(1)

2.3 数学归纳法(1)_数学_高中教育_教育专区。苏教版选修2-2导数的教学案 导学案凤凰高中数学教学参考书配套教学软件_教学设计 2.3 教学目标: 数学归纳法(1)...

2.3.数学归纳法(1)

选​修​2​-​2​的​内​容《数学归纳法(1)》 【学习目标】 了解数学归纳法的原理, 并能以递推思想作指导,理解数学归纳法的操作步 骤。 【重...

2.3.1数学归纳法2

2.1数学归纳法及其应用举例... 18页 免费如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 ...

2.3.1数学归纳法(一)

中山市东升高中 高一数学◆必修 1◆导学案 编写:高建彪 校审:贺联梅 理:§2.3.1 数学归纳法学习目标 1. 了解数学归纳法的原理,并能以递推思想作指 导,...

§2.3 数学归纳法(1)

数​学​归​纳​法​(​1​)高二数学导学案 选修 2-2 编制人: 使用日期: 编号: 1 § 2.3 数学归纳法(1) 【学习目标】 1. 了解数学归纳法...

2.3.1数学归纳法1

2.3.1 数学归纳法(3 月 15 日) 数学归纳法( 姓名___ 姓名 班级___ 班级 1.(2011·怀化模拟 用数学归纳法证明命题“当 n 是正奇数时,xn+yn 能被 x...