nbhkdz.com冰点文库

18函数简单性质-奇偶性(2)


函数的简单性质-奇偶性(2)
【本课重点】奇偶性的运用。 【预习导引】
1、判断 f ( x ) ? x ? 2 x ? 3 的奇偶性,并利用奇偶性作图。
2

2、已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,求 f ( 2 ) 的值.
5 3

3、

偶函数 f ? x ? 在区间 ?1, 4 ? 上是减函数,下列不等式成立的是: ( A. f



? 2 ? ? f ??

3

?

B. f ? ? 1 ? ? f ?3 ?;

C. f ? ? ? ? ? f ??

? D . f ?2 ? ? f ?? 3 ?

4.定义在 R 上的奇函数 f(x)在(0,+∞)上是增函数,又 f(-3)=0,则不等式 x f(x)<0 的解集为 ( ) A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)

【典例练讲】
例 l、 (1)若 ? ( x ), g ( x) 都是奇函数, f ( x ) ? a? ( x ) ? bg ( x ) ? 2 在 ? 0, ? ? ? 上有最大值 5, 则 f(x)在 ? ? ? , 0 ? 上有 ( ) ) A. 最小值-5 B.最大值-5 C.最小值-1 D.最大值-3 (2)已知函数 y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则( A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2) C.f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)
2

例 2. 定义在 ? ? 3 , 3 ? 上的奇函数 f ( x ) 为减函数,对于任意实数 a ,总有 f ( a ) ? f ( a ) ? 0 , 求 a 的取值范围.

例 3.定义在[-2,2]上的偶函数 g(x) ,当 x≥0 时,g(x)单调递减,若 g(1-m)< g(m) ,求 m 的取值范围.

例 4、设函数 f ( x ) ? 求 a , b , c 的值.

ax

2

?1

bx ? c

? a , b , c ? Z ? 的图象关于原点对称,

f (1) ? 2 , f ( 2 ) ? 3 ,

【课后检测】
1、 已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,则 f ? 2 ? ? _____
5 3

2、 已知 f ( x ) 是 R 上奇函数,且当 x ? 0 时, f ( x ) ? x x ? 1 ,求 f ( x ) 的表达式.

3、 已知 f ( x ) 是 R 上偶函数,且在 ?0 , ? ? ? 上递减,比较 f ( ? 的大小关系,并写出比较的过程.

3 4

) 与 f (1 ? a ? a )
2

4、 已知 f ( x ) 是偶函数,它在区间 ?a , b ? ( b ? a ? 0 ) 上是减函数.求证: f ( x ) 在 ?? b , ? a ? 上是增函数.

5、 若 f ( x ) 为偶函数, g ( x ) 为奇函数,且 f ( x ) ? g ( x ) ?

1 x ?1

,求 f ( x ), g ( x ) .

函数的简单性质-奇偶性(2)
【本课重点】奇偶性的运用。 【预习导引】
1、判断 f ( x ) ? x ? 2 x ? 3 的奇偶性,并利用奇偶性作图。偶
2

2、已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,求 f ( 2 ) 的值. ? 26
5 3

3、偶函数 f ? x ? 在区间 ?1, 4 ? 上是减函数,下列不等式成立的是: A. ) ( A. f

? 2 ? ? f ??

3

?

B. f ? ? 1 ? ? f ?3 ?;

C. f ? ? ? ? ? f ??

? D . f ?2 ? ? f ?? 3 ?

4.定义在 R 上的奇函数 f(x)在(0,+∞)上是增函数,又 f(-3)=0,则不等式 x f(x)<0 的解集为 ( A. ) A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)

【典例练讲】
例 l、 (1)若 ? ( x ), g ( x) 都是奇函数, f ( x ) ? a? ( x ) ? bg ( x ) ? 2 在 ? 0, ? ? ? 上有最大值 5, 则 f(x)在 ? ? ? , 0 ? 上有 (C ) ) B. 最小值-5 B.最大值-5 C.最小值-1 D.最大值-3 (2)已知函数 y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则( A A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2) C.f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)
2

例 2. 定义在 ? ? 3 , 3 ? 上的奇函数 f ( x ) 为减函数,对于任意实数 a ,总有 f ( a ) ? f ( a ) ? 0 , 求 a 的取值范围.
( ? 1, 0 )

例 3.定义在[-2,2]上的偶函数 g(x) ,当 x≥0 时,g(x)单调递减,若 g(1-m)< g(m) ,求 m 的取值范围.

?1 ? m ?

1 2

例 4、设函数 f ( x ) ? 求 a , b , c 的值.
?a ? 1 ? ?b ? 1 ?c ? 0 ?

ax

2

?1

bx ? c

? a , b , c ? Z ? 的图象关于原点对称,

f (1) ? 2 , f ( 2 ) ? 3 ,

(选做题) 、已知不恒为 0 的函数 f ( x ) 的定义域为 R,且对任意 x 1 , x 2 ,总有
f ( x 1 ? x 2 ) ? f ( x 1 ? x 2 ) ? 2 f ( x 1 ) f ( x 2 ) 成立, 判断 f ( x ) 的奇偶性.

当 f ( 0 ) ? 0 时奇
f ( 0 ) ? 1 时偶

【课后检测】
6、 已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,则 f ? 2 ? ? ____ ? 26 _
5 3

7、 已知 f ( x ) 是 R 上奇函数,且当 x ? 0 时, f ( x ) ? x x ? 1 ,求 f ( x ) 的表达式.
? x | x | ? 1, x ? 0 ? f ( x ) ? ?0, x ? 0 ? x | x | ? 1, x ? 0 ?

8、 已知 f ( x ) 是 R 上偶函数,且在 ?0 , ? ? ? 上递减,比较 f ( ? 的大小关系,并写出比较的过程.
f (? 3 4 ) ? f (1 ? a ? a )
2

3 4

) 与 f (1 ? a ? a )
2

9、 已知 f ( x ) 是偶函数,它在区间 ?a , b ? ( b ? a ? 0 ) 上是减函数.求证: f ( x ) 在 ?? b , ? a ? 上是增函数.

10、
f (x) ?

若 f ( x ) 为偶函数, g ( x ) 为奇函数,且 f ( x ) ? g ( x ) ?
1 x ?1
2

1 x ?1

,求 f ( x ), g ( x ) .

g (x) ?

x x ?1
2

思考:任意一个已知函数 f ( x ) 都可以表示为一个奇函数与一个偶函数之和, 你能求出这个奇函数与偶函数吗?
f (x) ? f ( x) ? f (? x) 2 ? f ( x) ? f (? x) 2

(选做题)已知不恒为零的函数 f ( x ) 对任意实数 x , y 都满足 f ( x ? y ) ? f ( x ? y ) ? 2[ f ( x ) ? f ( y )] ,判断 f ( x ) 的奇偶性并证明.
f (0) ? 0




18函数简单性质-奇偶性(2)

2008—2009 高一数学学案 NO.18 编制 张云德 函数简单性质-奇偶性(2)【本课重点】奇偶性的运用。 【预习导引】 1、判断 f ( x) ? x ? 2 x ? 3 的...

18函数简单性质-奇偶性(2)

18函数简单性质-奇偶性(2) 隐藏>> 函数的简单性质-奇偶性(2)【本课重点】奇偶性的运用。 【预习导引】 1、判断 f ( x ) ? x ? 2 x ? 3 的奇偶性...

18函数简单性质-奇偶性(1)

函数简单性质-奇偶性( 函数简单性质-奇偶性(1)【典例练讲】 典例练讲...【课后检测】 课后检测】 2、下列命题中正确的有 (1) f (x ) 是 R 上...

19函数简单性质-奇偶性(2)

2009—2010 高一数学学案 NO.18 编制 王军成 审定 高一数学备课组 函数的简单性质-奇偶性( 函数简单性质-奇偶性(2)【 典例练讲】 【典例练讲】例 l、已...

17函数简单性质-奇偶性(1)

18函数简单性质-奇偶性(...1/2 相关文档推荐 17函数简单性质-奇偶性(... ...函数的简单性质-奇偶性(1)【预习导引】 1、 已知函数 f ? x ? ? x 2 ...

第18课函数的简单性质

第12课函数的表示法(1) 第16课函数的奇偶性(1) 第17课函数奇偶性(2) ...第18函数简单性质·习题课 【新知导读】 1.下列函数中,在其定义域内...

函数的简单性质-奇偶性

函数简单性质-奇偶性_数学_高中教育_教育专区。函数简单性质-奇偶性【本课重点】奇偶性的概念及其应用。 【预习导引】 1、 已知函数 f ? x ? ? x2 ? ...

2.1.3函数的简单性质——奇偶性

课题 教学目标 函数简单性质——奇偶性 备课人 1、 观察函数图象的对称美, 并逐渐能用数学语言来刻画这种对称; 2、 理解函数奇偶性的定义 3、 能判断简单...

函数简单性质-奇偶性(2)

18函数简单性质-奇偶性(2) 5页 免费 2.1.3 函数的简单性质—奇... 暂无...函数的简单性质-奇偶性( 东山中学 函数的简单性质-奇偶性(2)【本课重点】奇偶...

(1)函数简单性质-奇偶性

1/2 相关文档推荐 18函数简单性质-奇偶性(1) 2页 1财富值 函数简单性质-...x ?1 函数的简单性质-奇偶性(2)【本课重点】奇偶性的运用。 【预习导引】 ...