nbhkdz.com冰点文库

18函数简单性质-奇偶性(2)

时间:2012-11-02


函数的简单性质-奇偶性(2)
【本课重点】奇偶性的运用。 【预习导引】
1、判断 f ( x ) ? x ? 2 x ? 3 的奇偶性,并利用奇偶性作图。
2

2、已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,求 f ( 2 ) 的值.
5 3

3、

偶函数 f ? x ? 在区间 ?1, 4 ? 上是减函数,下列不等式成立的是: ( A. f



? 2 ? ? f ??

3

?

B. f ? ? 1 ? ? f ?3 ?;

C. f ? ? ? ? ? f ??

? D . f ?2 ? ? f ?? 3 ?

4.定义在 R 上的奇函数 f(x)在(0,+∞)上是增函数,又 f(-3)=0,则不等式 x f(x)<0 的解集为 ( ) A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)

【典例练讲】
例 l、 (1)若 ? ( x ), g ( x) 都是奇函数, f ( x ) ? a? ( x ) ? bg ( x ) ? 2 在 ? 0, ? ? ? 上有最大值 5, 则 f(x)在 ? ? ? , 0 ? 上有 ( ) ) A. 最小值-5 B.最大值-5 C.最小值-1 D.最大值-3 (2)已知函数 y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则( A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2) C.f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)
2

例 2. 定义在 ? ? 3 , 3 ? 上的奇函数 f ( x ) 为减函数,对于任意实数 a ,总有 f ( a ) ? f ( a ) ? 0 , 求 a 的取值范围.

例 3.定义在[-2,2]上的偶函数 g(x) ,当 x≥0 时,g(x)单调递减,若 g(1-m)< g(m) ,求 m 的取值范围.

例 4、设函数 f ( x ) ? 求 a , b , c 的值.

ax

2

?1

bx ? c

? a , b , c ? Z ? 的图象关于原点对称,

f (1) ? 2 , f ( 2 ) ? 3 ,

【课后检测】
1、 已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,则 f ? 2 ? ? _____
5 3

2、 已知 f ( x ) 是 R 上奇函数,且当 x ? 0 时, f ( x ) ? x x ? 1 ,求 f ( x ) 的表达式.

3、 已知 f ( x ) 是 R 上偶函数,且在 ?0 , ? ? ? 上递减,比较 f ( ? 的大小关系,并写出比较的过程.

3 4

) 与 f (1 ? a ? a )
2

4、 已知 f ( x ) 是偶函数,它在区间 ?a , b ? ( b ? a ? 0 ) 上是减函数.求证: f ( x ) 在 ?? b , ? a ? 上是增函数.

5、 若 f ( x ) 为偶函数, g ( x ) 为奇函数,且 f ( x ) ? g ( x ) ?

1 x ?1

,求 f ( x ), g ( x ) .

函数的简单性质-奇偶性(2)
【本课重点】奇偶性的运用。 【预习导引】
1、判断 f ( x ) ? x ? 2 x ? 3 的奇偶性,并利用奇偶性作图。偶
2

2、已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,求 f ( 2 ) 的值. ? 26
5 3

3、偶函数 f ? x ? 在区间 ?1, 4 ? 上是减函数,下列不等式成立的是: A. ) ( A. f

? 2 ? ? f ??

3

?

B. f ? ? 1 ? ? f ?3 ?;

C. f ? ? ? ? ? f ??

? D . f ?2 ? ? f ?? 3 ?

4.定义在 R 上的奇函数 f(x)在(0,+∞)上是增函数,又 f(-3)=0,则不等式 x f(x)<0 的解集为 ( A. ) A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)

【典例练讲】
例 l、 (1)若 ? ( x ), g ( x) 都是奇函数, f ( x ) ? a? ( x ) ? bg ( x ) ? 2 在 ? 0, ? ? ? 上有最大值 5, 则 f(x)在 ? ? ? , 0 ? 上有 (C ) ) B. 最小值-5 B.最大值-5 C.最小值-1 D.最大值-3 (2)已知函数 y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则( A A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2) C.f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)
2

例 2. 定义在 ? ? 3 , 3 ? 上的奇函数 f ( x ) 为减函数,对于任意实数 a ,总有 f ( a ) ? f ( a ) ? 0 , 求 a 的取值范围.
( ? 1, 0 )

例 3.定义在[-2,2]上的偶函数 g(x) ,当 x≥0 时,g(x)单调递减,若 g(1-m)< g(m) ,求 m 的取值范围.

?1 ? m ?

1 2

例 4、设函数 f ( x ) ? 求 a , b , c 的值.
?a ? 1 ? ?b ? 1 ?c ? 0 ?

ax

2

?1

bx ? c

? a , b , c ? Z ? 的图象关于原点对称,

f (1) ? 2 , f ( 2 ) ? 3 ,

(选做题) 、已知不恒为 0 的函数 f ( x ) 的定义域为 R,且对任意 x 1 , x 2 ,总有
f ( x 1 ? x 2 ) ? f ( x 1 ? x 2 ) ? 2 f ( x 1 ) f ( x 2 ) 成立, 判断 f ( x ) 的奇偶性.

当 f ( 0 ) ? 0 时奇
f ( 0 ) ? 1 时偶

【课后检测】
6、 已知 f ( x ) ? x ? ax ? bx ? 8 且 f ( ? 2 ) ? 10 ,则 f ? 2 ? ? ____ ? 26 _
5 3

7、 已知 f ( x ) 是 R 上奇函数,且当 x ? 0 时, f ( x ) ? x x ? 1 ,求 f ( x ) 的表达式.
? x | x | ? 1, x ? 0 ? f ( x ) ? ?0, x ? 0 ? x | x | ? 1, x ? 0 ?

8、 已知 f ( x ) 是 R 上偶函数,且在 ?0 , ? ? ? 上递减,比较 f ( ? 的大小关系,并写出比较的过程.
f (? 3 4 ) ? f (1 ? a ? a )
2

3 4

) 与 f (1 ? a ? a )
2

9、 已知 f ( x ) 是偶函数,它在区间 ?a , b ? ( b ? a ? 0 ) 上是减函数.求证: f ( x ) 在 ?? b , ? a ? 上是增函数.

10、
f (x) ?

若 f ( x ) 为偶函数, g ( x ) 为奇函数,且 f ( x ) ? g ( x ) ?
1 x ?1
2

1 x ?1

,求 f ( x ), g ( x ) .

g (x) ?

x x ?1
2

思考:任意一个已知函数 f ( x ) 都可以表示为一个奇函数与一个偶函数之和, 你能求出这个奇函数与偶函数吗?
f (x) ? f ( x) ? f (? x) 2 ? f ( x) ? f (? x) 2

(选做题)已知不恒为零的函数 f ( x ) 对任意实数 x , y 都满足 f ( x ? y ) ? f ( x ? y ) ? 2[ f ( x ) ? f ( y )] ,判断 f ( x ) 的奇偶性并证明.
f (0) ? 0




函数8(函数奇偶性(2))

函数8(函数奇偶性(2))_高一数学_数学_高中教育_教育专区。北郊高级中学高一数学作业(2015 年 6 月 10 日) 2.2 函数简单性质(4) 一、填空题: ? 1.偶...

1.4.2正弦函数、余弦函数的性质——周期性、奇偶性

1.4.2 正弦函数、余弦函数性质(1) 【学习目标】1.通过自主学习,会求一些三角函数的周期 2.通过合作交流,会讨论一些简单三角函数奇偶性 【学习过程】 问题 ...

高中数学完整讲义——函数的图象与性质2.函数的奇偶性...

高中数学完整讲义——函数的图象与性质2.函数奇偶性与对称性_数学_高中教育_...【例18】 y ? f ( x) 图象关于 x ? 1 对称,当 x ≤ 1 时, f ( ...

...数学第2章函数2.1.3函数的简单性质第4课时奇偶性的...

创新设计2016_2017学年高中数学第2函数2.1.3函数简单性质第4课时奇偶性的应用课时作业_数学_高中教育_教育专区。第 4 课时 奇偶性的应用课时目标 1.巩固...

函数的奇偶性

2函数奇偶性的判定方法:定义法、图像法 (1)利用...(3)简单性质: 设, 的定义域分别是 ,那么在它们...设 A. B.-18 是定义在 C.-10 D.10 时, C...

2007-9-18高一数学1.3函数的基本性质 (5课时)

单调性与最大(小)值 奇偶性 集合与函数概念单元测试1/2 相关文档推荐 ...目标:1.理解奇函数、偶函数的概念,了解奇函数和偶函数的图象特征及简单性质. ...

2.1.3 函数的简单性质(4)_20121017100205680

mychance2010贡献于2013-04-18 0.0分 (0人评价)暂无用户评价 我要评价 授课...的性质,从形与数两个方面引导学生理解掌握函数单调性 与函数奇偶性; 2.能...

高一数学函数的基本性质知识点及练习题(含答案)

(2)利用定义判断函数奇偶性的格式步骤: 1 ○ 首先确定函数的定义域,并判断其...(3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于...

函数的性质、奇偶性、最值和二次函数的解析法

函数的性质、奇偶性、最值和函数的解析法_数学...2.函数简单性质: ⑴单调性: 一般地,设函数 y ...0 的图 象. 18.互为反函数的两个函数的关系: ...

§2.1.3函数的简单性质教案

§2.1.3函数简单性质教案_数学_高中教育_教育专区。耐心 细心 恒心 §2.1...§2.1.3 函数简单性质(三)——函数奇偶性(1)(2) y ? f ( x) ?...