nbhkdz.com冰点文库

正余弦性质1


1.4.2 正弦、余弦函数的性质(一) 【教学目的】理解并掌握正弦、余弦函数的定义域、值域以及最值; 【教学重点】正弦、余弦函数的定义域、值域及最值; 【教学难点】解决与正弦、余弦函数相关的函数定义域、值域及最值问题; 【教学过程】 一、设置情境 研究函数就是要讨论一些性质, y ? sin x, y ? cos x 是函数,我们当然 也要探讨它的一些属性.本节课,我们就来研究正

弦函数、余弦函数的最基 本的两条性质——定义域、值域. 二、重难点拨 请同学们做出 y ? sin x, y ? cos x 在 x∈[-2π ,2π ]内的图像

观察图像,思考并总结: 1、 正弦函数、余弦函数的定义域: 2、 正弦函数、余弦函数的值域: 有界性: 3、 最大值、最小值: 4、 正负值区间: (1) Sinx>0 (3)Cosx>0 5、零点: (1)sinx=0 三、例题解析 例 1、求下列函数的定义域: (1)y=sin2x ; (4)y= (2)y=-3sinx+2 ; (5) y ? lg(sin x) ;

(2)Sinx<0 (4)Cosx<0 (2)cosx=0

(3)y ?

2 cos x ? 1 ;

1 sin x



例 2、求下列函数的值域 (1)y=4cosx-1; (2) y ? 2 ? sin x ; (3) y ? 2 ? 3sin x
2

例 3、 求下列函数的最大值与最小值, 并求取得最大值与最小值时自变量 x 的取值集合; (1)y=cos3x+1, x∈R; (2)y=2-3sin2x, x?R

四、随堂训练 1、求下列函数的定义域. (1)y ?

2sin x ? 1 ; (2) y=

sin x ; 1 ? cos x

(3) y=lg(2cosx- 3 )

2、求下列函数的值域

3、求使下列函数取最大值的 x 的集合,并写出其最大值 (1)y=-2sinx; (2)y=2-cos

x π ; (3)y=3sin(2x+ ) 2 3

4、如果 cosx=

m?4 4 m

有意义,则 m 的取值范围是(

)

A. m ? 4

B. m ? 4

C. m=4

D. m ? 4

5、y=acosx+b 的 最 大 值 是 a=_______,b=_______ 五、课时小结 六、课时作业 P46 第 2 题

3, 最 小 值 是 -1, 则


高二数学正余弦函数的性质1

1.4.2 正弦余弦函数的性质(一) 教学目的: 知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义; 能力目标:掌握正、余弦函数的周期和最小正...

§1.4.1正弦、余弦函数的性质(一)

§1.4.1正弦余弦函数的性质(一)_数学_高中教育_教育专区。§1.4.1 正弦余弦函数的性质(一)一、学习目标: 1.掌握正弦函数,余弦函数的奇偶性、单调性. 四...

正弦函数的性质

正弦函数的性质_数学_高中教育_教育专区。正弦函数的性质:编辑本段解析式:y=sinx...(1-tanα×tanβ) 12.正弦(sin)等于对边比斜边; 余弦(cos)等于邻边比斜边...

正弦函数余弦函数的性质1

南和一中教与学一体化导学案 科目:高一数学 使用日期: 编写人: 题目:1.4.2 正弦函数,余弦函数的性质(1)班级:___ 姓名:___ 【学习目标】 1.进一步掌握正余...

正弦、余弦函数的性质(1)

1.4.2 正弦函数、余弦函数的性质 (1) 教学目的: 班级 姓名 问题: (1) 对于函数 y ? sin x ,x ? R 有 sin( ? 6 ? 2? ? 2? 是它的周期? ) ?...

正余弦函数的性质练习题

正余弦函数的性质练习题_数学_高中教育_教育专区。正余弦函数的性质练习题 1.已知函数 y=sin( ?x ? ? 4 )的最小正周期为 2? ,则 ? ? 3 2.f(x)是...

1-5正弦函数的性质

1-5正弦函数的性质_数学_高中教育_教育专区。正弦函数的性质 一、 教学思路【创设情境,揭示课题】 同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质...

高一数学正弦函数和余弦函数的图像与性质1

6.1 正弦函数和余弦函数的图像与性质(一)上海曙光中学 陶慰树一.教学内容分析 本章节内容是在学生学习了三角比及有关三角恒等变形公式后, 从函数的角度和层面来...

正弦函数.余弦函数的图像与性质1

正弦函数.余弦函数的图像与性质1_数学_高中教育_教育专区。正弦函数,余弦函数的图像与性质(一)一、选择题 1.函数 y=3sin(2x+ A.4π π )的最小正周期是(...

正余弦函数的性质第1课时

1.4 正弦余弦函数的性质 正弦余弦函数的性质(1) 时间:2012 年 2 月 21 日 时间教学目标:1.掌握周期函数与周期定义,并能够根据定义会求周期。 教学目标 2....