nbhkdz.com冰点文库

高三一轮单元测试01:集合、简易逻辑(带答案)


高三一轮单元测试 01:集合、简易逻辑 (时间 120 分钟 一、选择题(每小题 5 分,共 50 分) 1.设集合 P={3,4,5},Q={4,5,6,7},定义 P※ Q={(a,b)|a∈ P,b∈ Q},则 P※ Q中 元素的个数为 A.3 B.4 C.7 D.12 满分 150 分)

2. 设 A、 B 是两个集合, 定义 A-B={x|x∈ A

, 且 x ? B}, 若 M={x||x+1|≤2}, N={x|x=|sinα|, α∈ R},则 M-N= A.[-3,1] B.[-3,0) C.[0,1] D.[-3,0]

3.映射 f:A→B,如果满足集合 B 中的任意一个元素在A中都有原象,则称为“满射”.已知 集合 A 中有 4 个元素,集合 B 中有 3 个元素,那么从 A 到 B 的不同满射的个数为 A.24 B.6 C. 36 D.72

4.若 lga+lgb=0(其中 a≠1,b≠1),则函数 f(x)=ax 与 g(x)=bx 的图象 A.关于直线 y=x 对 B.关于 x 轴对称 C.关于 y 轴对称 D.关于原点对称

x1+x2 f(x1)+f(x2) 5.若任取 x1、x2∈ [a,b],且 x1≠x2,都有 f( 2 )> 成立,则称 f(x) 是[a,b]上 2 的凸函数.试问:在下列图像中,是凸函数图像的为
y a A b x a B y b x a C y b x a D y b x

p p 6.若函数 f(x)=x- x+2在(1,+∞)上是增函数,则实数 p 的取值范围是 A.[-1,+∞) B.[1,+∞) C.(-∞,-1] D.(-∞,1]

7.设函数 f(x)=x|x|+bx+c,给出下列四个命题: ① c=0 时,f(x)是奇函数 ③ f(x)的图象关于(0,c)对称 其中正确的命题是 A.① ④ B.① ③ C.① ② ③ D.① ② ④ ② b=0,c>0 时,方程 f(x)=0 只有一个实根 ④ 方程 f(x)=0 至多两个实根

ex+1 8.函数 y= x ,x∈ (0,+∞)的反函数是 e -1 A.y=ln x-1 ,x ∈ (-∞,1) x+1 B.y=ln x+1 ,x∈ (-∞,1) x-1

C.y=ln

x-1 ,x ∈ (1,+∞) x+1

D.y=ln

x+1 ,x∈ (1,+∞) x-1

9.如果命题 P: ? ?{?} ,命题 Q: ? ? {?} ,那么下列结论不正确的是 A.“P 或 Q”为真 C.“非 P”为假 B.“P 且 Q”为假 D.“非 Q”为假

10.函数 y=x2-2x 在区间[a,b]上的值域是[-1,3],则点(a,b)的轨迹 是图中的 A.线段 AB 和线段 AD C.线段 AD 和线段 BC 二、填空题(每小题 4 分,共 20 分) 11.已知函数 f(x)是定义在(-3,3)上的奇函数,当 0<x<3 时,f(x) 的图象如图所示,则不等式 f(x)cosx<0 的解集是 .
O

B.线段 AB 和线段 CD D.线段 AC 和线段 BD
y 1 2 3

. 。



x

12.国家规定个人稿费纳税办法是:不超过 800 元的不纳税;超 过 800 元而不超过 4000 元的按超过 800 元部分的 14%纳税; 超过 4000 元的按全部稿酬的 11% 纳税.已知某人出版一本书,共纳税 420 元时,这个人应得稿费(扣税前)为 元. .

? x 2 , x ? 0, 13.已知函数 f(x)= f ( x) ? ? 若f ( f ( x0 )) ? 2, 则 x0= ?2 cos x,0 ? x ? ? .

14.若对于任意 a∈ [-1,1],函数 f(x)=x2+(a-4)x+4-2a 的值恒大于零,则 x 的取值范围 是 .

15.如果函数 f(x)的定义域为 R,对于 m,n∈ R,恒有 f(m+n)=f(m)+f(n)-6,且 f(-1)是 不大于 5 的正整数,当 x>-1 时,f(x)>0.那么具有这种性质的函数 f(x)= 填上你认为正确的一个函数即可) 三、解答题 16. (12 分) 二次函数 f(x)满足 f (x+1)-f (x)=2x 且 f (0)=1. ⑴ 求 f (x)的解析式; ⑵ 在区间[- 1,1]上,y=f (x)的图象恒在 y=2x+m 的图象上方,试确定实数 m 的范围. 17. (12 分)已知集合 A= {x | ( x ? 2)[ x ? (3a ? 1)] ? 0} ,B= {x | 求 A ? B;⑵ 求使 B ? A 的实数 a 的取值范围. 18. (14 分)已知命题 p :方程 a 2 x 2 ? ax ? 2 ? 0 在[-1,1]上有解;命题 q :只有一个实数 x 满足不等式 x2 ? 2ax ? 2a ? 0 ,若命题“p 或 q”是假命题,求实数 a 的取值范围.
x ? 2a ? 0} .⑴ 当 a=2 时, x ? (a 2 ? 1)

.(注:

19. (14 分) 设函数 f ( x) ? 2x ? a ? 2? x ?1 (a 为实数). ⑴ 若 a<0, 用函数单调性定义证明:y ? f ( x) 在 (??, ??) 上是增函数;⑵ 若 a=0, y ? g ( x) 的图象与 y ? f ( x) 的图象关于直线 y=x 对称, 求函数 y ? g ( x) 的解析式.
a x

20. (14 分)函数 f ( x ) ? 2 x ? 的定义域为(0,1]( a 为实数) .⑴ 当 a ? ?1 时,求函数 y ? f ( x ) 的值域; ⑵ 若函数 y ? f ( x ) 在定义域上是减函数,求 a 的取值范围;⑶ 求函数 y ? f ( x ) 在 x∈ (0, 1]上的最大值及最小值,并求出函数取最值时 x 的值. 21. (14 分)对于函数 f ( x) ? ax2 ? (b ? 1) x ? b ? 2(a ? 0) ,若存在实数 x0 ,使 f ( x0 ) ? x0 成立, 则称 x0 为 f ( x) 的不动点.⑴ 当 a=2,b=-2 时,求 f ( x) 的不动点;⑵ 若对于任何实数 b,函 数 f ( x) 恒有两相异的不动点, 求实数 a 的取值范围; ⑶ 在⑵ 的条件下, 若 y ? f ( x) 的图象上 A、 B 两点的横坐标是函数 f ( x) 的不动点,且直线 y ? kx ? 实数 b 的取值范围。
1 2a ? 1
2

是线段 AB 的垂直平分线,求

集合与简易逻辑参考答案 一、选择题(每小题 5 分,共 50 分) 题次 1 2 3 4 5 6 7 8 9 10

答案 D B C C C A C D B A 简解 3:先将 A 中 4 元素分成三部份,然后全排列。 二、填空题(每小题 4 分,共 20 分) 3π ?π ? ?π ? 11.? 2 ,-1?∪(0,1)∪? 2 ,3?;12.3800;13. 4 ;14. (-∞?1)∪(3,+∞);15.x ? ? ? ? +6 或 2x+6 或 3x+6 或 4x+6 或 5x+6 三、解答题(共 80 分) 16.解: (1)设 f(x)=ax2+bx+c,由 f(0)=1 得 c=1,故 f(x)=ax2+bx+1. ∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.

?2a ? 2 ?a ? 1 即 2ax+a+b=2x,所以 ? ,∴f(x)=x2-x+1. ,? ? a ? b ? 0 b ? ? 1 ? ?
(2)由题意得 x2-x+1>2x+m 在[-1, 1]上恒成立. 即 x2-3x+1-m>0 在[-1, 1]上恒成立. 3 设 g(x)= x2-3x+1-m,其图象的对称轴为直线 x=2 ,所以 g(x) 在[-1,1]上递减. 故只需 g(1)>0,即 12-3× 1+1-m>0,解得 m<-1. 17. 解: (1)当 a=2 时,A=(2,7) ,B=(4,5)∴ A (2)∵ B=(2a,a2+1) ,
1 当 a< 时,A=(3a+1,2) 3

B=(4,5) .

? 2a ? 3a ? 1 要使 B ? A,必须 ? 2 ,此时 a=-1; ?a ? 1 ? 2
1 当 a= 时,A= ? ,使 B ? A 的 a 不存在; 3 1 当 a> 时,A=(2,3a+1) 3

? 2a ? 2 要使 B ? A,必须 ? 2 ,此时 1≤a≤3. ? a ? 1 ? 3a ? 1

综上可知,使 B ? A 的实数 a 的取值范围为[1,3]∪{-1} 18.

解 :由a 2 x 2 ? ax ? 2 ? 0,得(ax ? 2)( ax ? 1) ? 0, 2 1 显然a ? 0 ? x ? ? 或x ? a a 2 1 x?? ? ?1,1? , 故 | a |? 1或 | a |? 1,?| a |? 1 “只有一个实数满足x 2 ? 2ax ? 2a ? 0” .即抛物线y ? x 2 ? 2ax ? 2a与x轴只有 一个交点, ?? ? 4a 2 ? 8a ? 0.? a ? 0或2, ? 命题 " p或q为真命题"时 " | a |? 1或a ? 0" 命题 " P或Q "为假命题 ? a的取值范围为?a | ?1 ? a ? 0或0 ? a ? 1?

19.解: (1)设任意实数 x1<x2,则 f(x1)- f(x2)= (2x1 ? a ? 2? x1 ?1) ? (2x2 ? a ? 2? x2 ?1) = (2x1 ? 2x2 ) ? a(2? x1 ? 2? x2 ) = (2 x1 ? 2 x2 ) ?
2 x1 ? x2 ,?2x1 ? 2x 2,?2x 1 ? 2x ? 0;

2 x1 ? x2 ? a 2 x1 ? x2

a ? 0,? 2x1 ? x2 ? a ? 0 .

又 2 x1 ? x2 ? 0 ,∴f(x1)- f(x2)<0,所以 f(x)是增函数. (2)当 a=0 时,y=f(x)=2x-1,∴2x=y+1, ∴x=log2(y+1), y=g(x)= log2(x+1). 20.解: (1)显然函数 y ? f ( x ) 的值域为 [ 2 2 , ? ? ) ; ( 2 ) 若 函 数 y ? f ( x ) 在 定 义 域 上 是 减 函 数 , 则 任 取 x1 , x 2 ? ( 0.1] 且 x1 ? x 2 都 有
)?0 f ( x1 ) ? f ( x 2 ) 成立, 即 ( x1 ? x2 )(2 ? x a x
1 2

只要 a ? ?2 x1 x 2 即可, 由 x1 , x 2 ? ( 0.1] ,故 ?2 x1 x 2 ? ( ?2,0) ,所以 a ? ?2 , 故 a 的取值范围是 ( ?? ,?2] ; (3)当 a ? 0 时,函数 y ? f ( x ) 在 ( 0.1] 上单调增,无最小值, 当 x ? 1 时取得最大值 2 ? a ; 由(2)得当 a ? ?2 时,函数 y ? f ( x ) 在 ( 0.1] 上单调减,无最大值, 当 x=1 时取得最小值 2-a; 当 ?2 ? a ? 0 时,函数 y ? 当x?
?2a 2

f ( x)

在 ( 0.
? 2a

?2 a 2

] 上单调减,在 [

?2a 2

, 1 ] 上单调增,无最大值,

时取得最小值 2



21.解? f ( x) ? ax2 ? (b ? 1) x ? b ? 2(a ? 0), (1)当 a=2,b=-2 时,

f ( x) ? 2 x 2 ? x ? 4.

设 x 为其不动点,即 2 x 2 ? x ? 4 ? x. 则 2 x 2 ? 2 x ? 4 ? 0.

? x1 ? ?1, x2 ? 2.即f ( x) 的不动点是-1,2.
由已知,此方程有相异二实根,

(2)由 f ( x) ? x 得: ax2 ? bx ? b ? 2 ? 0 .

? x ? 0 恒成立,即 b 2 ? 4a(b ? 2) ? 0. 即 b 2 ? 4ab ? 8a ? 0 对任意 b ? R 恒成立.

? ? b ? 0.

?16a 2 ? 32a ? 0

? 0 ? a ? 2.

(3)设 A( x1 , x1 ), B( x2 , x2 ) , 直线 y ? kx ?
1 2a ? 1
2

是线段 AB 的垂直平分线,

? k ? ?1

b , 2a 1 b b 1 ? M在y ? kx ? 2 上,? ? ? ? 2 . 2a 2a 2a ? 1 2a ? 1

记 AB 的中点 M ( x0 , x0 ). 由(2)知 x0 ? ?

化简得: b ? ?

a 2a ? 1
2

??

1 2a ? 1 a

??

1 2 2a ? 1 a

??

2 2 时,等号成立) . (当a ? 4 2

即b ? ?

2 . 4


高三一轮单元测试01:集合、简易逻辑(带答案)

高三一轮单元测试01:集合简易逻辑(带答案)_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 高三一轮单元测试01:集合简易逻辑(带答案)_数学_...

高三数学第一轮复习单元测试--集合与简易逻辑

高三数学第一轮复习单元测试--集合简易逻辑_数学_...共 25 分.答案填在题中横线上. 11 、.已知函数...文档贡献者 cgatxq 贡献于2016-06-01 相关文档...

高三数学一轮复习集合和简易逻辑单元测试题

高三数学一轮复习集合简易逻辑单元测试题_数学_高中教育_教育专区。高二数学第...本大题共 4 小题,每小题 4 分,共 16 分.答案填在题中横线上. 13、若...

2014高三数学一轮复习单元练习题:集合与简易逻辑(Ⅰ)

2014高三数学一轮复习单元练习:集合简易逻辑(Ⅰ)_数学_高中教育_教育专区。高三一轮复习集合与简易逻辑(Ⅰ)2014.7.2 一、单项选择题(本大题共 10 小题,...

高三数学一轮复习集合和简易逻辑单元测试题

高三数学一轮复习集合简易逻辑单元测试题_数学_高中教育_教育专区。高三数学一...本大题共 4 小题,每小题 4 分,共 16 分.答案填在题中横线上. 13、若...

2016届高三理科数学一轮复习单元测试:第一章 集合与简易逻辑

2016届高三理科数学一轮复习单元测试:第一章 集合简易逻辑_数学_高中教育_教育...答案 ①③ 15.已知集合 A ={x∈R||x+2|<3},集合 B ={x∈R|(x-m...

一轮复习单元试卷01:集合与简易逻辑

江苏省高考数学一轮复习单元试卷 01:集合简 易逻辑一、选择题(共 10 小题,每小题 4 分,满分 40 分) 1. 分) (4 (2002?天津)设集合 M= A.M=N B...

2015年高考复习第一章集合与简易逻辑单元测试卷

2015年高考复习第一章集合简易逻辑单元测试卷_高三数学_数学_高中教育_教育专区。2015年高考一轮复习第一章集合简易逻辑单元测试卷(有详解) ...

高三数学一轮复习集合和简易逻辑单元测试题

高三数学一轮复习集合简易逻辑单元测试题_高三数学_数学_高中教育_教育专区。高三...本大题共 4 小题,每小题 4 分,共 16 分.答案填在题中横线上. 13、若...