nbhkdz.com冰点文库

高一数学基本初等函数复习


3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

第二章
一、课标要求:

基本初等函数(Ⅰ)

教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例 和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立

和研究一个函数模型 的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1. 了解指数函数模型的实际背景. 2. 理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 3. 理解指数函数的概念和意义,掌握 f(x)=ax 的符号、意义,能借助计算器或计算机 画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 4. 通过应用实例的教学,体会指数函数是一种重要的函数模型. 5. 理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数 转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 6. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的 概念,掌握 f(x)=logax 符号及意义,体会对数函数是一类重要的函数模型,能借助计算器 或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特 殊点). 7. 知道指数函数 y=ax 与对数函数 y=logax 互为反函数(a>0, a≠1) ,初步了解反函 数的概念和 f- -1(x)的意义. 8. 通过实例, 了解幂函数的概念, 结合五种具体函数 y ? x, y ? x3 , y ? x ?1 , y ? x 2 的 图象,了解它们的变化情况 . 二、编写意图与教学建议: 1. 教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养 学生的思想素质和激发学生学习数学的兴趣和欲望. 教学中要充分发挥课本的这些材料的 作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设. 2. 在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让 学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁 移与互逆作用. 3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
1

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

数这两种函数模型的学习,教学中不宜对其定义做更多的拓展 . 4. 教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安 排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担. 5. 通过运用计算机绘制指数函数的动态图象 ,使学生进一步体会到信息技术在数学 学习中的作用,教师要尽量发挥电脑绘图的教学功能 .. 6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真 研读. 三、教学内容与课时安排的建议 本章教学时间约为 14 课时. 2.1 指数函数: 2.2 对数函数: 2.3 幂函数: 小结: 6 课时 6 课时 1 课时 1 课时

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

§2.1.1

指数(第 1—2 课时)

一.教学目标: 1.知识与技能: (1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与方法: 通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值 (1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想; (2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点 1.教学重点: (1)分数指数幂和根式概念的理解; (2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂及根式概念的理解 三.学法与教具 1.学法:讲授法、讨论法、类比分析法及发现法 2.教具:多媒体 四、教学设想:

第一课时
一、复习提问: 什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢? 归纳: 在初中的时候我们已经知道: 若x ? a, 则 x 叫做 a 的平方根.同理, 若x ?a,
2 3

则 x 叫做 a 的立方根. 根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如 4 的平方 根为 ?2 ,负数没有平方根,一个数的立方根只有一个,如―8 的立方根为―2;零的平方 根、立方根均为零. 二、新课讲解 类比平方根、立方根的概念,归纳出 n 次方根的概念. n 次方根:一般地,若 x ? a ,则 x 叫做 a 的 n 次方根(throot) ,其中 n >1,且 n
n

∈N ,当 n 为偶数时,a 的 n 次方根中,正数用 n a 表示,如果是负数,用 ? n a 表示, n a


叫做根式.n 为奇数时,a 的 n 次方根用符号 n a 表示,其中 n 称为根指数,a 为被开方数. 类比平方根、立方根,猜想:当 n 为偶数时,一个数的 n 次方根有多少个?当 n 为奇
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

数时呢?
n ? ?n为奇数, a的n次方根有一个,为 a a为正数:? n ? ?n为偶数, a的n次方根有两个,为 ? a

? ? n为奇数, a的n次方根只有一个,为 n a a为负数:? ? ? n为偶数, a的n次方根不存在.
零的 n 次方根为零,记为 n 0 ? 0 举例:16 的次方根为 ?2 , ?27的5次方根为5 ?27 等等,而 ?27 的 4 次方根不存在. 小结:一个数到底有没有 n 次方根,我们一定先考虑被开方数到底是正数还是负数, 还要分清 n 为奇数和偶数两种情况. 根据 n 次方根的意义,可得:

( n a )n ? a ( n a ) n ? a 肯定成立, n a n 表示 an 的 n 次方根,等式 n a n ? a 一定成立吗?如果不
一定成立,那么 a 等于什么? 让学生注意讨论,n 为奇偶数和 a 的符号,充分让学生分组讨论. 通过探究得到:n 为奇数, a ? a
n n n n

n 为偶数,

n

? a, a ? 0 a n ?| a |? ? ? ? a, a ? 0

3 如 3 (?3) ?

3

?27 ? ?3, 4 (?8) 4 ?| ?8 |? 8
n n

小结:当 n 为偶数时, a 化简得到结果先取绝对值,再在绝对值算具体的值,这样 就避免出现错误: 例题:求下列各式的值 (1) (1)
3

(?8)3

(2)
n

(?10) 2
n

(3)

4

(? 3?

4

)

(4)

a (? b 2 )

分析:当 n 为偶数时,应先写 a ?| a | ,然后再去绝对值. 思考: a ? ( n a ) 是否成立,举例说明.
n n
n

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

课堂练习:1. 求出下列各式的值

(1) 7 (?2)7
2

(2) 3 (3a ? 3) 3 ( a ? 1)

(3) (3a ? 3)
4

4

2.若 a ? 2a ? 1 ? a ? 1, 求a的取值范围 . 3.计算 3 (?8) ? 4 (3 ? 2) ? 3 (2 ? 3)
3 4 3

三.归纳小结:
* 1.根式的概念:若 n>1 且 n ? N ,则 x是a的n次方根,n为奇数时,x= n a ,

n 为偶数时, x ? ? n a ;
2.掌握两个公式: n为奇数时,( n a ) , n为偶数时, a ?| a |? ?
n n n

?a (a ? 0) ??a (a ? 0)

3.作业:P69 习题 2.1

A组 第1题

第二课时
提问: 1.习初中时的整数指数幂,运算性质?

a n ? a ? a ? a ??? a, a 0 ? 1 (a ? 0) , 00 无意义

a?n ?

1 an

(a ? 0)

a m ? a n ? a m? n ; (a m )n ? a mn (a n )m ? a mn , (ab)n ? a nbn
什么叫实数? 有理数,无理数统称实数. 2.观察以下式子,并总结出规律: a >0 ① ③
5

a10 ? 5 (a2 )5 ? a 2 ? a 5 a12 ? 4 (a3 )4 ? a3 ? a 4

10



a8 ? ( a 4 ) 2 ? a 4 ? a 2
10
5

8

12

4

④ 5 a10 ? (a 2 )5 ? a 2 ? a 5

小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形 式, (分数指数幂形式). 根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net
3

百万教学资源,完全免费,无须注册,天天更新!

a ? a ? (a ? 0)
2

2 3

b ? b 2 ? (b ? 0)
4

1

c5 ? c 4 ? (c ? 0)
m

5

即: n a m ? a n (a ? 0, n ? N * , n ? 1) 为此,我们规定正数的分数指数幂的意义为:
m n

a ? n am (a ? 0, m, n ? N * )
正数的定负分数指数幂的意义与负整数幂的意义相同. 即: a
? m n

?

1 a
m n

(a ? 0, m, n ? N * )

规定:0 的正分数指数幂等于 0,0 的负分数指数幂无意义. 说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式 的一种新的写法,而不是 a m ? a m ? a m ??? a m (a ? 0) 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数 幂的运算性质,可以推广到有理数指数幂,即: (1) a ? a ? a
r s r S r ?s

n

1

1

1

(a ? 0, r , s ? Q)

(2) (a ) ? a (a ? 0, r , s ? Q)
rs

(3) (a ? b) ? a b (Q ? 0, b ? 0, r ? Q)
r r r

若 a >0,P 是一个无理数,则 P 该如何理解?为了解决这个问题,引导学生先阅读课 本 P62——P62. 即: 2 的不足近似值,从由小于 2 的方向逼近 2 , 2 的过剩近似值从大于 2 的方向逼近 2 . 所以,当 2 不足近似值从小于 2 的方向逼近时, 5 近5
2 2

的近似值从小于 5

2

的方向逼

.
2

当 2 的过剩似值从大于 2 的方向逼近 2 时, 5
3eud 教育网 http://www.3edu.net

的近似值从大于 5

2

的方向逼近

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

5 2 ,(如课本图所示)
所以, 5
2

是一个确定的实数.
p

一般来说,无理数指数幂 a (a ? 0, p是一个无理数) 是一个确定的实数,有理数指 数幂的性质同样适用于无理数指数幂.无理指数幂的意义, 是用有理指数幂的不足近似值和 过剩近似值无限地逼近以确定大小. 思考: 2 的含义是什么? 由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同, 实数指数幂有意义,也有相同的运算性质,即:
3

a r ? a s ? a r ? s (a ? 0, r ? R, s ? R) (a r ) s ? a rs (a ? 0, r ? R, s ? R) (a ? b)r ? a r b r (a ? 0, r ? R)
3.例题 (1) . (P60,例 2)求值 解:① 8 ? (2 ) ? 2 ② 25
? 1 2

2 3

2 3 3

3?

2 3

? 22 ? 4
1 2?( ? ) 2

? (52 )

?

1 2

?5

? 5?1 ?

1 5

③ ( )

1 2

?5

? (2?1 )?5 ? 2?1?( ?5) ? 32

④(

16 ? 3 2 4?( ? 3 ) 2 27 ) 4 ? ( ) 4 ? ( ) ?3 ? 81 3 3 8
1 2 1 2 7 2 8

(2) . (P60,例 3)用分数指数幂的形式表或下列各式( a >0) 解: a . a ? a ? a ? a
3 3 2 3?

?a
2

a2 ? 3 a2 ? a2 ? 3 a ? a3
a3 1 4

2?

?3 a
41 2 3

a ? a ? a 3 ? a 3 ? (a 3 )2 ? a

分析:先把根式化为分数指数幂,再由运算性质来运算. 课堂练习:P63 练习 第 1,2,3,4 题
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

补充练习:

1 (2n ?1 ) 2 ? ( ) 2 n ?1 2 1. 计算: 的结果 4n8?2
a10 1 n ?3 2. 若 a3 ? 3, a10 ? 384, 求a3 ? [( ) 7 ] 的值 a3
小结: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数. 3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的. 作业:P69 习题 2.1 第 2 题

第三课时
一.教学目标 1.知识与技能: (1)掌握根式与分数指数幂互化; (2)能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法: 通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观 (1)培养学生观察、分析问题的能力; (2)培养学生严谨的思维和科学正确的计算能力. 二.重点、难点: 1.重点:运用有理指数幂性质进行化简,求值. 2.难点:有理指数幂性质的灵活应用. 三.学法与教具: 1.学法:讲授法、讨论法. 2.教具:投影仪 四.教学设想: 1.复习分数指数幂的概念与其性质 2.例题讲解 例 1. (P60,例 4)计算下列各式(式中字母都是正数) (1) (2a 3 b 2 )(?6a 2 b 3 ) ? (?3a 6 b 6 )
1
2 1 1 1 1 5

(2) (m 4 n 8 )8 (先由学生观察以上两个式子的特征,然后分析、提问、解答)
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

?

3

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

分析: 四则运算的顺序是先算乘方, 再算乘除, 最后算加减, 有括号的先算括号的. 整 数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算 顺序. 我们看到(1)小题是单项式的乘除运算; (2)小题是乘方形式的运算,它们应让如 何计算呢? 其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行. 第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算. 解: (1)原式= [2 ? (?6) ? (?3)]a 3 = 4ab =4 a
1
0

2 1 1 ? ? 2 6

b2

1 1 5 ? ? 3 6

(2)原式= (m 4 )8 (n 8 )8 =m n
2 ?3

?

3

例 2. (P61 例 5)计算下列各式 (1) ( 3 25 ? 125) ? 4 25 (2)

a2 a.3 a2

(a >0)

分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先 化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数 指数幂后再由运算法则计算. 解: (1)原式= (253 ? 1252 ) ? 25 4 = (53 ? 52 ) ? 5 2 = 53
1 6 2 1 ? 2

1

1

1

2

3

1

? 52

3 1 ? 2

= 5 ?5 = (2)原式=
6

5 ?5

a2 a ?a
1 2 2 3

?a

1 2 2? ? 2 3

? a 6 ? 6 a5

5

小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

也不能既有分母,又含有负指数. 课堂练习: 化简: (1) ( 9) 3 ( 3 102 ) 2 ? 1002 (2) 3 ? 2 2 ? 3 ? 2 2 (3)
a a
? 2 9
5

a a

归纳小结: 1. 熟练掌握有理指数幂的运算法则,化简的基础. 2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 作业:P65 习题 2.1 A组 第4题 B组 第2题

2.1.2 指数函数及其性质(2 个课时)
一. 教学目标: 1.知识与技能 ①通过实际问题了解指数函数的实际背景; ②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观 ①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法 展示函数图象,让学生通过观察,进而研究指数函数的性质. 二.重、难点 重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具: ①学法:观察法、讲授法及讨论法. ②教具:多媒体.

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

第一课时
一.教学设想: 1. 情境设置 ①在本章的开头, 问题 (1) 中时间 x 与 GDP 值中的 y ? 1.073 ( x ? x ? 20)与问题(2)
x

1 5 中时间t和C-14含量P的对应关系P=[( ) 30 ]t ,请问这两个函数有什么共同特征. 2
②这两个函数有什么共同特征
1 t 1 5730 1 5730 把P=[( ) ]变成P ? [( ) ]t ,从而得出这两个关系式中的底数是一个正数,自变量 2 2

1

为指数,即都可以用 y ? a ( a >0 且 a ≠1 来表示).
x

二.讲授新课 指数函数的定义 一般地,函数 y ? a ( a >0 且 a ≠1)叫做指数函数,其中 x 是自变量,函数的定义
x

域为 R. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1) y ? 2 (4) y ? ? (7) y ? x
x?2

(2) y ? (?2) (5) y ? x
2

x

(3) y ? ?2 (6) y ? 4 x
x

x

x

2

x

(8) y ? (a ? 1)

( a >1,且 a ? 2 )
x

小结:根据指数函数的定义来判断说明:因为 a >0, x 是任意一个实数时, a 是一 个确定的实数,所以函数的定义域为实数集 R.

?当x ? 0时,a x等于0 ? 若a ? 0, ? x ? ?当x ? 0时,a 无意义
若 a <0,如 y ? (?2) , 先时,对于x= , x ?
x
x

1 6

1 等等,在实数范围内的函数值不存在. 8
x

若 a =1, y ? 1 ? 1, 是一个常量, 没有研究的意义, 只有满足 y ? a (a ? 0, 且a ? 1)
1

的形式才能称为指数函数, a为常数,象y=2-3x ,y=2x , y ? x x , y ? 3x?5 , y ? 3x ? 1等等,
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net
x

百万教学资源,完全免费,无须注册,天天更新!

不符合 y ? a (a ? 0且a ? 1)的形式,所以不是指数函数 .

我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研 究. 下面我们通过 先来研究 a >1 的情况 用计算机完成以下表格,并且用计算机画出函数 y ? 2 的图象
x

x
y ? 2x

?3.00
1 ?8

?2.50

?2.00
1 4

?1.50

?1.00
1 2

0.00
1 y=2x

0.50

1.00
2

1.50

2.00
4

y

0 x

再研究,0< a <1 的情况,用计算机完成以下表格并绘出函数 y ? ( ) 的图象.
x

1 2

x
1 y ? ( )x 2

?2.50 ?2.00 ?1.50 ?1.00 0.00 1.00 1.50 2.00 2.50
1 4 1 2

1

2

4

?1? y?? ? ?2?

x

y

3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网! -

-

-

-

-

-

-

-

-

-

0

x

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

从图中我们看出 y ? 2 与y ? ( ) 的图象有什么关系?
x x

1 2
x

通过图象看出 y ? 2 与y ? ( ) 的图象关于y轴对称, 实质是 y ? 2 上的 点(-x, y )
x
x

1 2

1 与y=( )x上点(-x, y )关于y轴对称. 2 1 x x 讨论: y ? 2 与y ? ( ) 的图象关于 y 轴对称,所以这两个函数是偶函数,对吗? 2 1 x 1 x x x ② 利 用 电 脑 软 件 画 出 y ?5 , y ?3 ,y ?( ) ,y ?( ) 的 函 数 图 象 . x 3 5 ?1? y ? 5x y?? ? ?5? y ? 3x x ?1? y?? ? ?3?
8 6 4 2 -5

0
-2 -4

5

10

-6

-8

问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律. 从 图上 看 y?a ( a > 1 ) 与 y?a ( 0 < a < 1) 两函 数图 象的 特征 .
x x

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!
8

y ? a (0 ? a ? 1)
x

6

y ? a x (a ? 1)

4

2

-10

-5

0
-2 -4

5

10

-6

-8

问题 2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、 奇偶性. 问题 3:指数函数 y ? a ( a >0 且 a ≠1) ,当底数越大时,函数图象间有什么样的关
x

系.

图象特征 0< a <1 a >1 向 x 轴正负方向无限延伸 图象关于原点和 y 轴不对称 函数图象都在 x 轴上方 函数图象都过定点(0,1) 自左向右, 图象逐渐上升 在第一象限内的图 象纵坐标都大于 1 在第二象限内的图 象纵坐标都小于 1 自左向右, 图象逐渐下降 在第一象限内的图 象纵坐标都小于 1 在第二象限内的图 象纵坐标都大于 1
x

函数性质

a >1
非奇非偶函数

0< a <1

函数的定义域为 R 函数的值域为 R+

a 0 =1
增函数 减函数

x >0, a x >1
x <0, a x <1

x >0, a x <1
x <0, a x >1

5.利用函数的单调性,结合图象还可以看出: (1)在 [a, b]上, f (x )=a ( a >0 且 a ≠1)值域是 [ f (a), f (b)]或[ f (b), f (a)]; (2)若 x ? 0, 则f (x)? 1; f (x)取遍所有正数当且仅当x ? R; (3)对于指数函数 f ( x) ? a ( a >0 且 a ≠1) ,总有 f (1) ? a;
x

(4)当 a >1 时,若 x1 < x2 ,则 f ( x1 ) < f ( x2 ) ;
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

例题: 例 1: (P66 例 6)已知指数函数 f ( x) ? a ( a >0 且 a ≠1)的图象过点(3,π ) ,
x



f (0), f (1), f (?3)的值.
分析:要求 f (0), f (1), f (?3)的值,只需求出a, 得出f(x)=(? 3 )x , 再把 0,1,3 分 别代入 x ,即可求得 f (0), f (1), f (?3). 提问:要求出指数函数,需要几个条件? 课堂练习:P68 练习:第 1,2,3 题 补充练习:1、函数 f ( x) ? ( ) 的定义域和值域分别是多少?
x

1

1 2

2、当 x ? [?1,1]时, 函数f ( x) ? 3 ? 2的值域是多少?
x

解(1) x ? R, y ? 0 (2) (-

5 ,1) 3

例 2:求下列函数的定义域: (1) y ? 2 x ?4
x

4

(2) y ? ( )

2 3

| x|

分析:类为 y ? a (a ? 1, a ? 0) 的定义域是 R,所以,要使(1) , (2)题的定义域, 保要使其指数部分有意义就得 . 3.归纳小结 作业:P69 习题 2.1 A 组第 5、6 题 1、理解指数函数 y ? a (a ? 0), 注意a ? 1与0 ? a ? 1两种情况。
x

2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论 的数学思想 .

第 2 课时
教学过程: 1、复习指数函数的图象和性质 2、例题
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

例 1: (P66 例 7)比较下列各题中的个值的大小 (1)1.72.5 与 1.73 ( 2 ) 0.8
?0.1

与 0.8?0.2 0.93.1
x

( 3 ) 1.70.3 与

解法 1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出 y ? 1.7 的 图象,在图象上找出横坐标分别为 2.5, 3 的点,显然,图象上横坐标就为 3 的点在横坐标
8 6

4

y ? 1.7 x
5 10

2

-10

-5

0

-2

-4

-6

-8

为 2.5 的点的上方,所以

2.5 3 1.7 ? 1 . .7

解法 2:用计算器直接计算: 1.7 所以, 1.7
2.5

2.5

? 3.77

3 1.7 ? 4.91

? 1.73

解法 3:由函数的单调性考虑 因为指数函数 y ? 1.7 在 R 上是增函数,且 2.5<3,所以, 1.7
x

2.5

? 1.73

仿照以上方法可以解决第(2)小题 . 注:在第(3)小题中,可以用解法 1,解法 2 解决,但解法 3 不适合 . 由于 1.70.3=0.93.1 不能直接看成某个函数的两个值,因此,在这两个数值间找到 1,把这两数值分别与 1 比较大小,进而比较 1.70.3 与 0.93.1 的大小 . 思考: 1、已知 a ? 0.8 , b ? 0.8 , c ? 1.2 , 按大小顺序排列 a, b, c .
0.7 0.9 0.8

1

1

2. 比较 a 3与a 2的大小( a >0 且 a ≠0). 指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用. 例 2(P67 例 8)截止到 1999 年底,我们人口哟 13 亿,如果今后,能将人口年平均 均增长率控制在 1%,那么经过 20 年后,我国人口数最多为多少(精确到亿)? 分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题: 1999 年底 人口约为 13 亿 经过 1 年 人口约为 13(1+1%)亿
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

经过 2 年 人口约为 13(1+1%) (1+1%)=13(1+1%)2 亿 经过 3 年 人口约为 13(1+1%)2(1+1%)=13(1+1%)3 亿 经过 x 年 人口约为 13(1+1%) x 亿 经过 20 年 人口约为 13(1+1%)20 亿 解:设今后人口年平均增长率为 1%,经过 x 年后,我国人口数为 y 亿,则

y ? 13(1 ? 1%) x
当 x =20 时, y ? 13(1 ? 1%)
20

? 16(亿)

答:经过 20 年后,我国人口数最多为 16 亿. 小结:类似上面此题,设原值为 N ,平均增长率为 P ,则对于经过时间 x 后总量

y ? N (1 ? p)x , 像 y ? N (1? p )x 等形如 y ? kax ( K ? R ,a >0 且 a ≠1)的函数称为指数
型函数 . 思考:P68 探究: (1)如果人口年均增长率提高 1 个平分点,利用计算器分别计算 20 年后,33 年后的 我国人口数 . (2)如果年平均增长率保持在 2%,利用计算器 2020~2100 年,每隔 5 年相应的人口数 . (3)你看到我国人口数的增长呈现什么趋势? (4)如何看待计划生育政策? 3.课堂练习 ( 1 )右图是指数函数① y ? a
x

② y ?b

x

③ y?c

x

④ y ? d 的图象,判断
x

y ? bx y ? cx
8

Y=
6

y ? dx

y ? ax
-10 -5

4

2

5

10

-2

-4

-6

a, b, c, d 与 1 的大小关系;
(2)设 y1 ? a ① y1 ? y2
3 x ?1

, y2 ? a ?2 x , 其中 a >0, a ≠1,确定 x 为何值时,有:

② y1 > y2

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

(3)用清水漂洗衣服,若每次能洗去污垢的

3 ,写出存留污垢 y 与漂洗次数 x 的函 4

数关系式,若要使存留的污垢,不超过原有的 1%,则少要漂洗几次(此题为人教社 B 版 101 页第 6 题). 归纳小结:本节课研究了指数函数性质的应用,关键是要记住 a >1 或 0< a <时
x 在此基础上研究其性质 .本节课还涉及到指数型函数的应用, 形如 y ? ka y ? a x 的图象,

(a>0 且 a ≠1). 作业:P69 A 组第 7 ,8 题

P70 B 组

第 1,4 题

对数(第一课时)
一.教学目标: 1.知识技能: ①理解对数的概念,了解对数与指数的关系; ②理解和掌握对数的性质; ③掌握对数式与指数式的关系 . 2. 过程与方法: 通过与指数式的比较,引出对数定义与性质 . 3.情感、态度、价值观 (1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力. (2)通过对数的运算法则的学习,培养学生的严谨的思维品质 . (3)在学习过程中培养学生探究的意识. (4)让学生理解平均之间的内在联系,培养分析、解决问题的能力. 二.重点与难点: (1)重点:对数式与指数式的互化及对数的性质 (2)难点:推导对数性质的 三.学法与教具: (1)学法:讲授法、讨论法、类比分析与发现 (2)教具:投影仪 四.教学过程: 1.提出问题 思考: (P72 思考题)y ? 13 ?1.01 中, 哪一年的人口数要达到 10 亿、 20 亿、 30 亿??,
x

该如何解决? 即:

18 20 30 ? 1.01x , ? 1.01x , ? 1.01x , 在个式子中, x 分别等于多少? 13 13 13

象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引 出对数的概念).
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

1、对数的概念 一 般 地 , 若 a ? N( a ? 0,且 a ? 1), 那 么 数 x 叫 做 以 a 为 底 N 的 对 数, 记 作
x

x ? log a N

a 叫做对数的底数,N 叫做真数.
举例:如: 4 ? 16, 则2 ? log 4 16 ,读作 2 是以 4 为底,16 的对数.
2

4 ? 2 ,则

1 2

1 1 ? log 4 2 ,读作 是以 4 为底 2 的对数. 2 2

提问:你们还能找到那些对数的例子 2、对数式与指数式的互化 在对数的概念中,要注意: (1)底数的限制 a >0,且 a ≠1 (2) a ? N ? log a N ? x
x

指数式 ? 对数式 幂底数← a →对数底数 指 数← x →对数 幂 ←N→真数 说明:对数式 log a N 可看作一记号,表示底为 a ( a >0,且 a ≠1) ,幂为 N 的指数 工表示方程 a ? N ( a >0,且 a ≠1)的解. 也可以看作一种运算,即已知底为 a ( a >
x

0,且 a ≠1)幂为 N,求幂指数的运算. 因此,对数式 log a N 又可看幂运算的逆运算. 例题: 例 1(P73 例 1) 将下列指数式化为对数式,对数式化为指数式. (1)54=645 (4) log 1 16 ? ?4
2

(2) 2

1 1 m (3) ( ) ? 5.73 64 3 (5) log10 0.01 ? ?2 (6) log e 10 ? 2.303
?6

?

注: (5) 、 (6)写法不规范,等到讲到常用对数和自然对数后,再向学生说明. (让学生自己完成,教师巡视指导) 巩固练习:P74 练习 1、2 3.对数的性质: 提问:因为 a >0, a ≠1 时, a ? N ? x ? log a
x N

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net
0 1

百万教学资源,完全免费,无须注册,天天更新!

则 由1、 a =1 2、 a = a ②负数和零有没有对数? ③根据对数的定义, a
log a N

如何转化为对数式

=?

(以上三题由学生先独立思考,再个别提问解答) 由以上的问题得到 ① ? a ? 1, a ? a
0 1

( a >0,且 a ≠1)



∵ a >0,且 a ≠1 对任意的力, log10 N 常记为 lg N . 恒等式: a
log a N

=N

4、两类对数 ① 以 10 为底的对数称为常用对数, log10 N 常记为 lg N . ② 以无理数 e=2.71828?为底的对数称为自然对数, log e N 常记为 ln N . 以后解题时,在没有指出对数的底的情况下,都是指常用对数,如 100 的对数等于 2,即 lg100 ? 2 . 说明:在例 1 中, log10 0.01应改为lg 0.01, log e 10应改为ln10 . 例 2:求下列各式中 x 的值 (1) log 64 x ? ?

2 3
? 2 3

(2) log x 8 ? 6

(3) lg100 ? x

(4) ? ln e ? x
2

分析:将对数式化为指数式,再利用指数幂的运算性质求出 x. 解: (1) x ? (64)

? (43 )

?

2 3

?4

2 3?( ? ) 3

? 4?2 ?
1 3 6

1 16
1 2

(2) x ? 8, 所以( x ) ? (8) ? (2 ) ? 2 ? 2
6

1 6 6

1 6

(3) 10 ? 100 ? 10 , 于是x ? 2
x 2

(4)由 ? ln e ? x, 得 ? x ? ln e , 即e
2 2

-x

? e2

所以 x ? ?2 课堂练习:P74 练习 3、4 补充练习:1. 将下列指数式与对数式互化,有 x 的求出 x 的值 .

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!
4 2

(1) 5

?

1 2

?

1 5

(2) log

?x

(3) 3x ?

1 27
5

(4) ( ) x ? 64 2.求 a
log a b?logb c?logc N

1 4

(5) lg 0.0001 ? x

(6) ln e ? x

的值(a,b,c ? R + , 且不等于 1,N>0).
log3 1 5

3.计算 3log3

5

? 3

的值.

4.归纳小结:对数的定义

a b ? N ? b ? log a N (a >0 且 a ≠1)
1 的对数是零,负数和零没有对数 对数的性质

l o ag a?

1 a >0 且 a ≠1

a loga N ? N
作业:P86 P88 习题 2.2 A组 B组 1、2 1

对数(第二课时)
一.教学目标: 1.知识与技能 ①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简, 并掌握化简求值的技能. ②运用对数运算性质解决有关问题. ③培养学生分析、综合解决问题的能力. 培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法 ①让学生经历并推理出对数的运算性质. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观 让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 二.教学重点、难点 重点:对数运算的性质与对数知识的应用 难点:正确使用对数的运算性质 三.学法和教学用具 学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标.
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

教学用具:投影仪 四.教学过程 1.设置情境 复习:对数的定义及对数恒等式

log a N ? b ? a b ? N
指数的运算性质.

( a >0,且 a ≠1,N>0) ,

a m ? a n ? a m?n ;

a m ? a n ? a m?n
m

(a ) ? a ;
m n mn

a ?a
n

n m

2.讲授新课 探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的 关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道 a ? a ? a
m n m? n

,那

m ? n 如何表示,能用对数式运算吗?
如: a ? a ? a
m n m? n m? n , 设M ? a m , N ? a n。 于是 MN ? a , 由对数的定义得到

M ? a m ? m ? log a M , N ? a n ? n ? log a N MN ? a m? n ? m ? n ? log a MN

? log a M ? log a N ? log a MN (放出投影)
即:同底对数相加,底数不变,真数相乘 提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗? (让学生探究,讨论) 如果 a >0 且 a ≠1,M>0,N>0,那么: (1) log a MN ? log a M ? log a N (2) log a

M ? log a M ? log a N N
n

(3) log a M ? n log a M 证明: (1)令 M ? a , N ? a
m n

(n ? R)

则:

M ? a m ? a n ? a m?n N
教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

?m ? n ? l o g a
又由 M ? a ,
m

M N

N ? an

? m ? log a M , n ? log a N
即: log a M ? log a N ? m ? n ? log a
n

M N
N n

(3) n ? 0时, 令N ? log a M , 则M ? a

b ? nl o g , M ? a M则
?a ? a
N n b n

b n

a

?N ? b M 即 log a ? log a M ? log a N N 当 n =0 时,显然成立.
n ?l o g M a M ?n lo a g

提问:1. 在上面的式子中,为什么要规定 a >0,且 a ≠1,M>0,N>0? 2. 你能用自己的语言分别表述出以上三个等式吗? 例题:1. 判断下列式子是否正确, a >0 且 a ≠1, x >0 且 a ≠1, x >0, x > y , 则有 (1) log a x ? log a y ? log a ( x ? y ) (3) log a (2) log a x ? log a y ? log a ( x ? y ) (4) log a xy ? log a x ? log a y (6) log a x ? ? log a

x ? log a x ? log a y y
n

(5) (log a x) ? n log a x (7) n log a x ?

1 x

1 log a x n

例 2:用 log a x , log a y , log a z 表示出(1) (2)小题,并求出(3) 、 (4)小题的 值. (1) log a

xy z

(2) log a

x2 y
3

8

(3) log z (4 ? 2 )
7 5

(4) lg 5 100

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

分析:利用对数运算性质直接计算: (1) log a (2) log a

xy ? log a xy ? log a z ? log a x ? log a y ? log a z z
x2 y
3

z

? log a x 2 y ? log a 3 z ? log a x 2 ? log a

y ? log a 3 z

= 2log a x ?
7 5

1 1 log a y ? log a z 2 3
7 5

(3) log 2 (4 ? 2 ) ? log 2 4 ? log 2 2 ? 14 ? 5 ? 19 (4) lg 100 ? lg10 ?
5 2 5

2 5

点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式. 让学生完成 P79 练习的第 1,2,3 题 提出问题: 你能根据对数的定义推导出下面的换底公式吗? a >0,且 a ≠1, c >0,且 e ≠1, b >0

log a b ?

log c b log c a

先让学生自己探究讨论,教师巡视,最后投影出证明过程. 设 M ? log c a, N ? log c b, 则a ? c , b ? c
M N

且 a M ? c, 所以cN ? (a M ) N ? a M ? b 即:

1

1

N

N N log c b ? log a b, 又因为 ? M M log c a

所以:

log c b ? log a b log c a

小结:以上这个式子换底公式,换的底 C 只要满足 C>0 且 C≠1 就行了,除此之外, 对 C 再也没有什么特定的要求. 提问:你能用自己的话概括出换底公式吗? 说明:我们使用的计算器中, “ log ”通常是常用对数. 因此,要使用计算器对数,一 定要先用换底公式转化为常用对数. 如:

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

log 2 3 ?

lg 3 lg 2
3

即计算 log 2 的值的按键顺序为: “ log ”→“3”→“÷”→“ log ”→“2” →“=” 再如:在前面要求我国人口达到 18 亿的年份,就是要计算

x ? log1.01

18 13

所以

18 lg 18 lg18 ? lg13 1.2553 ? 1.139 x ? log1.01 ? 13 ? ? 13 lg1.01 lg1.01 0.043
= 32.8837 ? 33(年) 练习:P79 练习 4 让学生自己阅读思考 P77~P78 的例 5,例的题目,教师点拨. 3、归纳小结 (1)学习归纳本节 (2)你认为学习对数有什么意义?大家议论. 4、作业 (1)书面作业:P86 习题2.2 第 3、4 题 P87 第 11、12 题 2、思考: (1)证明和应用对数运算性质时,应注意哪些问题? (2) log 2 (?3)(?5)等于 log 2 (?3) ? log 2 (?5)吗?

§2.2.2 对数函数及其性质(第一、二课时)
一.教学目标 1.知识技能 ①对数函数的概念,熟悉对数函数的图象与性质规律. ②掌握对数函数的性质,能初步运用性质解决问题. 2.过程与方法 让学生通过观察对数函数的图象,发现并归纳对数函数的性质. 3.情感、态度与价值观 ①培养学生数形结合的思想以及分析推理的能力; ②培养学生严谨的科学态度. 二.学法与教学用具
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质; 2.教学手段:多媒体计算机辅助教学. 三.教学重点、难点 1、重点:理解对数函数的定义,掌握对数函数的图象和性质. 2、难点:底数 a 对图象的影响及对数函数性质的作用. 四.教学过程 1.设置情境 在 2.2.1 的例 6 中,考古学家利用 log
5730 1 2

P 估算出土文物或古遗址的年代,对于

每一个 C14 含量 P,通过关系式,都有唯一确定的年代 t 与之对应.同理,对于每一个对数 式 y ? log a 中的 x , 任取一个正的实数值,y 均有唯一的值与之对应, 所以 y ? log a 关于x
x x

的函数. 2.探索新知 一般地,我们把函数 y ? log a x ( a >0 且 a ≠1)叫做对数函数,其中 x 是自变量, 函数的定义域是(0,+∞) . 提问: (1) .在函数的定义中,为什么要限定 a >0 且 a ≠1. (2) .为什么对数函数 y ? log a x ( a >0 且 a ≠1)的定义域是(0,+∞) .组织学 生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解.
y 答:①根据对数与指数式的关系,知 y ? log a x 可化为 a ? x ,由指数的概念,要使

a y ? x 有意义,必须规定 a >0 且 a ≠1.
y y ②因为 y ? log a x 可化为 x ? a ,不管 y 取什么值,由指数函数的性质, a >0,所

以 x ? (0, ??) . 例题 1:求下列函数的定义域 (1) y ? log a x
2
2

(2) y ? log a (4 ? x)
2
x2

( a >0 且 a ≠1)

分析:由对数函数的定义知: x >0; 4 ? x >0,解出不等式就可求出定义域. 解: (1)因为 x >0,即 x ≠0,所以函数 y ? log a 的定义域为 ? x | x ? 0? . (2)因为 4 ? x >0,即 x <4,所以函数 y ? log a
(4 ? x )

的定义域为 ? x | x < 4? .
x

下面我们来研究函数的图象,并通过图象来研究函数的性质: 先完成 P81 表 2-3,并根据此表用描点法或用电脑画出函数 y ? log 2 的图象, 再利 用电脑软件画出 y ? log 0.5 的图象.
x

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

x
y

1 2
-1

1 0

2 1

4 2

6 2.58

8 3

12 3.58

16 4

y

y ? log 0.5 x



x

y ? log 2 x
) y ? 注 意 到 : y ? log 1 x ? ? log 2 x , 若 点 ( x , y 在
2

l2 o gx 的图象上,则点

( x, ? y ) 与 ( x, ? y ) 关于 x 轴对称, 因此,y ? log 1 x ( x, ? y)在y ? log 1 x 的图象上. 由于
2

2

的图象与 y ? log 2 x 的图象关于 x 轴对称 . 所以,由此我们可以画出 y ? log 1 x 的图象 .
2

先由学生自己画出 y ? log 1 x 的图象, 再由电脑软件画出 y ? log 2 x 与 y ? log 1 x 的图
2 2

象. 探究:选取底数 a(a >0,且 a ≠1)的若干不同的值,在同一平面直角坐标系内作出相应 的对数函数的图象.观察图象,你能发现它们有哪些特征吗? .作法:用多媒体再画出 y ? log 4 x , y ? log3 x , y ? log 1 x 和 y ? log 1 x
3 4

y ? log3 x

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

4

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

2

y ? log 4 x

-5

0

5

y ? log 1 x
-2

y ? log 1 x
3

4

提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征, -4 性质又如何? 先由学生讨论、交流,教师引导总结出函数的性质. (投影) 图象的特征 (1)图象都在 y 轴的右边 (2)函数图象都经过(1,0)点 (3)从左往右看,当 a >1 时,图象逐渐 上升,当 0< a <1 时,图象逐渐下降 . 函数的性质 (1)定义域是(0,+∞) (2)1 的对数是 0 (3)当 a >1 时, y ? log a 是增函数,当
x

0< a <1 时, y ? log a x 是减函数. (4)当 a >1 时

x >1,则 log a x >0
(4)当 a >1 时,函数图象在(1,0)点 右边的纵坐标都大于 0,在(1,0)点左 边的纵坐标都小于 0. 当 0< a <1 时,图 象正好相反,在(1,0)点右边的纵坐标 都小于 0,在(1,0)点左边的纵坐标都 大于 0 . 0< x <1, log a x <0 当 0< a <1 时

x >1,则 log a x <0
0< x <1, log a x <0

由上述表格可知,对数函数的性质如下(先由学生仿造指数函数性质完成,教师适当 启发、引导) :

a >1
图 象

0< a < 1

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

性 质

(1)定义域(0,+∞) ; (2)值域 R; (3)过点(1,0) ,即当 x =1, y =0; (4)在(0,+∞)上是增函数 在(0,+∞)是上减函数

例题训练: 1. 比较下列各组数中的两个值大小 (1) log 2 3.4 , (2) log 0.3 1.8 , (3) log a 5.1,

log 2 8.5

log 0.3 2.7 log a 5.9
( a >0,且 a ≠1)

分析:由数形结合的方法或利用函数的单调性来完成: (1)解法 1:用图形计算器或多媒体画出对数函数 y ? log 2 x 的图象.在图象上,横坐 标为 3、4 的点在横坐标为 8.5 的点的下方: 所以, log 2 3.4 ? log 2 8.5 解法 2: 由函数 y ? log 2 x在R +上是单调增函数, 且 3.4<8.5, 所以 log 2 3.4 ? log 2 8.5 . 解法 3:直接用计算器计算得: log 2 3.4 ? 1.8 , log 2 8.5 ? 3.1 (2)第(2)小题类似 (3)注:底数是常数,但要分类讨论 a 的范围,再由函数单调性判断大小. 解法 1:当 a >1 时, y ? log a x 在(0,+∞)上是增函数,且 5.1<5.9. 所以, log a 5.1 ? log a 5.9 当 a ? 1 时, y ? log a x 在(0,+∞)上是减函数,且 5.1<5.9. 所以, log a 5.1 ? log a 5.9 解法 2:转化为指数函数,再由指数函数的单调判断大小不一, 令 b1 ? log a 5.1, 则a 1 ? 5.1,
b

令 b2 ? log a 5.9, 则a

b2

? 5.9, 则 则ab2 ? 5.9

当 a >1 时, y ? a 在 R 上是增函数,且 5.1<5.9
x

所以, b1 < b2 ,即 log a 5.1 < log a 5.9
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net
x

百万教学资源,完全免费,无须注册,天天更新!

当 0< a <1 时, y ? a 在 R 上是减函数,且 5.1>5.9 所以, b1 < b2 ,即 log a 5.1 > log a 5.9 说明:先画图象,由数形结合方法解答 课堂练习:P85 练习 第2,3题 补充练习 1.已知函数 y ? f (2 ) 的定义域为[-1,1],则函数 y ? f (log 2 x) 的定义域为
x

2.求函数 y ? 2 ? log 2 x( x ? 1) 的值域. 3.已知 log m 7 < log n 7 <0,按大小顺序排列 m, n, 0, 1 4.已知 0< a <1, b>1, ab>1. 比较 log a

1 1 , log a b, logb 的大小 b b

归纳小结: ② 对数函数的概念必要性与重要性; ②对数函数的性质,列表展现.

对数函数(第三课时)
一.教学目标: 1.知识与技能 (1)知识与技能 (2)了解反函数的概念,加深对函数思想的理解. 2.过程与方法 学生通过观察和类比函数图象,体会两种函数的单调性差异. 3. 情感、态度、价值观 (1)体会指数函数与指数; (2)进一步领悟数形结合的思想. 二.重点、难点: 重点:指数函数与对数函数内在联系 难点:反函数概念的理解 三.学法与教具: 学法:通过图象,理解对数函数与指数函数的关系. 教具:多媒体 四.教学过程: 1.复习
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

(1)函数的概念 (2)用列表描点法在同一个直角坐标点中画出 y ? 2 与y ? log 2 x 的函数图象.`
x

2.讲授新知

y ? 2x

x
y

? ?

-3

-2

-1

0 1

1 2

2 4

3 8

? ?

1 8

1 4

1 2

y ? log 2 x

x
y

? ?

-3

-2

-1

0 1

1 2

2 4

3 8

? ?

1 8

1 8

1 2

图象如下:

y

y ? 2x y ? log 2 x
0 x

探究:在指数函数 y ? 2 中, x 为自变量, y 为因变量,如果把 y 当成自变量, x 当
x

成因变量,那么 x 是 y 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由. 引导学生通过观察、类比、思考与交流,得出结论. 在指数函数 y ? 2 中, x 是自变量, y 是 x 的函数( x ? R, y ? R ) ,而且其在 R
x ?

上是单调递增函数. 过 y 轴正半轴上任意一点作 x 轴的平行线,与 y ? 2 的图象有且只有
x

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!
x

一个交点 . 由指数式与对数式关系, y ? 2 得 x ? log2 y ,即对于每一个 y ,在关系式

x ? log2 y 的作用之下, 都有唯一的确定的值 x 和它对应, 所以, 可以把 y 作为自变量,x
作为 y 的函数,我们说 x ? log 2 y是y ? 2 ( x ? R)的反函数 .
x

从我们的列表中知道, y ? 2 与x ? log 2 y 是同一个函数图象.
x

3.引出反函数的概念(只让学生理解,加宽学生视野) 当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把 这个函数的自变量作为新的函数的因变量,我们称这两个函数为反函数. 由反函数的概念可知,同底的指数函数和对数函数互为反函数. 如 x ? log 3 y是y ? 3 的反函数,但习惯上,通常以 x 表示自变量, y 表示函数,对
x

写成 y ? l o3g x 调 x ? log3 y 中 的 x , y , 这 样 y ? log3 x y ? 3x ( x ? R) 的反函数.

x ? (0, ??) 是 指 数 函 数

以 后 , 我 们 所 说 的 反 函 数 是 x , y 对 调 后 的 函 数 , 如 y ? 2 ( x ? R) 的 反 函 数 是
x

y ? log 2 x

x ? (0, ??) .
x

同理, y ? a (a ? 1且a >1)的反函数是 y ? log a x(a >0 且 a ? 1) . 课堂练习:求下列函数的反函数 (1) y ? 5
x

(2) y ? log 0.5 x

归纳小结: 1. 今天我们主要学习了什么? 2.你怎样理解反函数? 课后思考: (供学有余力的学生练习) 我们知道 y ? a (a >0 且a ? 1) 与对数函数 y =loga x (a >0 且 a ? 1) 互为反函数,探
x

索下列问题. 1.在同一平面直角坐标系中,画出 y =2 与y ? log 2 x 的图象,你能发现这两个函数
x

有什么样的对称性吗? 2.取 y ? 2 图象上的几个点,写出它们关于直线 y ? x 的对称点坐标,并判断它们
x

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

是否在 y ? log 2 x 的图象上吗?为什么? 3. 由上述探究你能得出什么结论, 此结论对于 y ? a 与y ? log a x
x

(a >0 且a ? 1) 成

立吗?

幂函数
一.教学目标: 1.知识技能 (1)理解幂函数的概念; (2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用. 2.过程与方法 类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质. 3.情感、态度、价值观 (1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性. 二.重点、难点 重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质 5.学法与教具 (1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ; (2)教学用具:多媒体 三.教学过程: 引入新知 阅读教材 P90 的具体实例(1)~(5) ,思考下列问题. (1)它们的对应法则分别是什么? (2)以上问题中的函数有什么共同特征? 让学生独立思考后交流,引导学生概括出结论 答:1、 (1)乘以 1 (2)求平方 (3)求立方 (4)求算术平方根 (5)求-1 次方 2、上述的问题涉及到的函数,都是形如: y ? x ,其中 x 是自变量,? 是常数.
?

探究新知 1.幂函数的定义 一般地,形如 y ? x ( x ? R)的函数称为幂孙函数,其中 x 是自变量, ? 是常数.
?

如 y ? x2 , y ? x 3 , y ? x 本初等函数.

1

?

1 4

等都是幂函数,幂函数与指数函数,对数函数一样,都是基

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

2.研究函数的图像 (1) y ? x (4) y ? x
?1

(2) y ? x 2 (5) y ? x
3

1

(3) y ? x

2

一.提问:如何画出以上五个函数图像 引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最 后,教师利用电脑软件画出以上五个数数的图像.

y ? x2
4

y?x
y ? x2
2

1

y=x3 y=x-1 0
5 10 15

-5

-2

-4

-6

让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注意引 导学生用类比研究指数函数,对函数的方法研究幂函数的性质. 通过观察图像,填 P91 探究中的表格
-8 -10

y?x
定义域 奇偶性 在第Ⅰ象限 单调增减性 定点 R 奇 在第Ⅰ象限 单调递增 (1,1)

y ? x2
R 奇 在第Ⅰ象限 单调递增 (1,1)

y ? x3
R 奇 在第Ⅰ象限 单调递增 (1,1)

y ? x2

1

y ? x ?1

? x | x ? 0?
非奇非偶 在第Ⅰ象限 单调递增 (1,1)

? x | x ? 0?
奇 在第Ⅰ象限 单调递减 (1,1)

3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1) (原因:1 ? 1 ) ;
x

(2) x >0 时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

看,函数图象逐渐上升). 特别地,当 x >1, x >1 时, x ∈(0,1) , y ? x 的图象都在 y ? x 图象的下方,
2

形状向下凸越大,下凸的程度越大(你能找出原因吗?) 当∠α <1 时, x ∈(0,1) , y ? x 的图象都在 y ? x 的图象上方,形状向上凸,α
2

越小,上凸的程度越大(你能说出原因吗?) (3)α <0 时,幂函数的图象在区间(0,+∞)上是减函数. 在第一家限内,当 x 向原点靠近时,图象在 y 轴的右方无限逼近 y 轴正半轴,当 x 慢 慢地变大时,图象在 x 轴上方并无限逼近 x 轴的正半轴. 例题: 1.证明幂函数 f ( x) ?

x在[0, ??] 上是增函数

证:任取 x1 , x2 ? [0, ??), 且x 1 < x2 则

f(x ? 1 )? f ( x 2 )
=

1

x?

2

x

( x 1 ? x2 )( x 1 ? x2 ) x 1 ? x2

=

x 1 ? x2 x 1 ? x2
x2 >0

因 x1 ? x2 <0, x 1 ?

所以 f ( x1 ) ? f ( x2 ) ,即 f ( x) ? 思考: 我们知道,若 y ? f ( x) ? 0, 若

x在[0, ? ?] 上是增函数.

f ( x1 ) ? 1 得 f ( x1 ) ? f ( x2 ) ,你能否用这种作比的方 f ( x2 )

法来证明 f ( x) ?

x在[0, ??] 上是增函数,利用这种方法需要注意些什么?
3 3

2.利用函数的性质 ,判断下列两个值的大小
1 1

(1) 2 6 ,

36

(2) ( x ? 1) 2 ,

x2

( x ? 0)

(3) (a 2 ? 4) 4 , 4

?

2

?

2 4

分析:利用幂函数的单调性来比较大小. 5.课堂练习

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net
2 3

百万教学资源,完全免费,无须注册,天天更新!

画出 y ? x 的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性. 6.归纳小结:提问方式 (1)我们今天学习了哪一类基本函数,它们定义是怎样描述的? (2)你能根据函数图象说出有关幂函数的性质吗? 作业:P92 习题 2.3 第 2、3 题

小结与复习 一.教学目标 1.知识与技能 (1)理解指数与对数,指数函数与对数函数的联系. (2)能更加熟练地解决与指数函数,对数函数有关的问题. 2.过程与方法 通过提问,分析点评,让学生更能熟悉指数函数,对数函数的性质. 3.情感、态度、价值观 (1)提高学生的认知水平,为学生塑造良好的数学认识结构. (2)培养学生数形结合的思想观念及抽象思维能力. 二.重点、难点 重点:指数函数与对数函数的性质。 难点:灵活运用函数性质解决有关问题。 三、学法与教具 1、学法:讲授法、讨论法。 2、教具:投影仪。 四、教学设想 1、回顾本章的知识结构

整数指数幂

定义

3eud 教育网 http://www.3edu.net 指数 教学资源集散地。可能是最大的免费教育资源网! 有理数指数幂 对数

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

运算性质 无理数指数幂 定义 定义 指数函数 图象与性质 对数函数 图象与性质

2、指数与对数 指数式与对数式的互化 幂值 真数

a b = N ? log a N = b
底数 指数←→对数值 提问:在对数式中,a,N,b 的取值范围是什么? 例 1:已知 log 54 27 = a ,54b=3,用 a, b表示 log108 81 的值 解法 1:由 54 =3 得 log54 3 =b ∴ log108 81 =
b

log 54 81 log 54 27 ? log 54 3 a?b a?b ? ? = log 54 108 log 54 2 ? 1 2 ? log 54 27 2 ? a
x

解法 2:由 log 54 27 ? a 得 54 ? 27 设 x ? log108 81, 则108 ? 81 所以 (54 ? 27 ) ? 3 ? 27
2 ?1 x

即: (54 ? 54 ) ? 54 ? 54
2 b

?a x

a

? 54a ?b ,即2 x ? ax ? a ? b a?b 因此得: x ? 2?a
所以 54 (1)法 1 是通过指数化成对数,再由对数的运算性质和换底公式计算结果.
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

2 x ? ax

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

法 2 是通过对数化成指数,再由指数的运算性质计算出结果,但法 2 运算的技巧性较 大。 2.指数函数与对数函数 问题 1:函数 y ? a 与y ? log a 中,a与x 分别必须满足什么条件.
x x

问题 2:在同一直角坐标系中画出函数 y ? a 与 log a 的图象,并说明两者之间的关
x x

系. 问题 3:根据图象说出指数函数与对数函数的性质. 例 2:已知函数 y ( x) 的图象沿 x 轴方向向左平移 1 个单位后与 f ( x) ? 3 的图象关于
x

直线 y ? x 对称,且 g (19) ? a ? 2 ,则函数 y ? 3 (0 ? x ? 1) 的值域为
ax

.

分析:函数 y ? 3 关于直线 y ? x 对称的函数为 y ? log3 ( x ? 1)
x

∴ g (19) ? log3 18 ? 2 ? log3 2 ∴ a ? log 3 2, ? y ? 3 ? (3
ax log3 2 x

) ? 2x

∵ x ? (0,1], 则y ? (1, 2] 小结: 底数相同的指数函数与对数函数关于 y ? x 对称, 它们之间还有一个关系式子:

a

log a N

? N (a ? 1, a ? 0, N ? 0) 1? x 例 3:已知 f ( x) ? log a (a ? 0且a ? 1) 1? x (1)求 f ( x) 的定义域
(2)求使 f ( x) ? 0 的 x 的取值范围 分析: (1)要求 f ( x) ? log a 则应有

1? x 的定义域, 1? x

?1 ? x ? 0 ?1 ? x ? 0 1? x ?0?? 或? 1? x ?1 ? x ? 0 ?1 ? x ? 0

1 (2)注意考虑不等号右边的 0 化为 log ,则(2)小题变为 a

log a

1? x 1? x 1? x ? log a 1, 再分a>1和0<a<1两种情况分别求出 ? 1和0 ? ? 1. 1? x 1? x 1? x
建议:通过提问由学生作答 课堂小结: 1.指数与对数实质上只是同一数量关系的两种不同的形式,它们之间可以互化,这

种等价互化也是指数运算和对数运算的常用方法. 2.底数相同的指数函数和对数函数互为反函数,它们的图象关于 y ? x 对称,它们 在各自的定义域内增减性是一致的,通过函数图象,利用数形结合,记作指数函数与对数 函数的性质.
3eud 教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!

3eud 教育网 http://www.3edu.net

百万教学资源,完全免费,无须注册,天天更新!

作业:P90 P91

A组 B组

3 3

7 4

3eud 教育网 http://www.3edu.net

教学资源集散地。可能是最大的免费教育资源网!


高中数学必修1基本初等函数复习学案

高中数学必修1基本初等函数复习学案_数学_高中教育_教育专区。高一数学人教A版必修1 指数与指数函数复习学案一,基础知识回顾 1,n 次方根 一般地,若 xn ? a ,...

高一数学必修1第二章基本初等函数知识点整理

高一数学必修1第二章基本初等函数知识点整理_高一数学_数学_高中教育_教育专区。必修 1 第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数 2.1.1 指数与指数...

高中数学必修1数学基本初等函数经典复习题+答案

高中数学必修1数学基本初等函数经典复习题+答案_数学_高中教育_教育专区。高中数学公式复习 必修1 基本初等函数 复习题 1、幂的运算性质 (1) a r ? a s ? ...

高一基本初等函数复习教案

高一基本初等函数复习教案_数学_高中教育_教育专区。好教师姓名 年级 阶段 吴康富 高一 基础(√) 学生姓名 学科 提高() 数学 强化( ) 填写时间 上课时间 课时计...

高一数学必修1知识点总结:第二章基本初等函数

高一数学必修1知识点总结:第二章基本初等函数_数学_高中教育_教育专区。高中数学必修 1 知识点总结第二章 基本初等函数 〖2.1〗指数函数 2.1.1 指数与指数幂...

高一数学基本初等函数练习题

高一数学基本初等函数练习题_数学_高中教育_教育专区。基本初等函数(2)一、选择题: 1、 1 log 3 12 ? log 3 2 ? ( 2 ) A. 3 B. 2 3 C. 1 2 ...

函数概念与基本初等函数高中数学知识点总结

DBFQ DFDF ZHUOYUE 函数概念与基本初等函数高中数学知识点总结函数贯穿整个初中和高中阶段,不但是中考的重要内容,也是高考重要内容,所以参加高考的 考生务必重视,酷课...

高考数学一轮复习-基本初等函数知识点与典型例题

高考数学一轮复习-基本初等函数知识点与典型例题_数学_高中教育_教育专区。基本初等函数【整体感知】:定义域 定义 对应法则 值域 映射函数 区间 一次函数 一元二次...

高一数学基本初等函数经典复习题

高一数学基本初等函数经典复习题_数学_高中教育_教育专区。基本初等函数 复习题 1、 下列函数中,在区间 ? 0 , ? ? ? 不是增函数的是( A. y ? 2 x ) ...

高中必修一基本初等函数的练习题及答案

高中必修一基本初等函数练习题及答案_高一数学_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 高中必修一基本初等函数练习题及答案_高一数学_...