nbhkdz.com冰点文库

高中数学必修全套教案5


第一章 解三角形
章节总体设计
(一)课标要求 本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实 在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦 定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等

知识和方法解决一些与测量和几何计算有关 的生活实际问题。 (二)编写意图与特色 1.数学思想方法的重要性 数学思想方法的教学是中学数学教学中的重要组成部分, 有利于学生加深数学知识的理 解和掌握。 本章重视与内容密切相关的数学思想方法的教学, 并且在提出问题、 思考解决问题的策 略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它 们都是关于三角形的边角关系的结论。 在初中, 学生已经学习了相关边角关系的定性的知识, 就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边 及其所夹的角相等,那么这两个三角形全”等。 教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题: “在 任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准 确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边 及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形 . 我们仍然从量化的角度来研究这个问题, 也就是研究如何从已知的两边和它们的夹角计算出 三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。 2.注意加强前后知识的联系 加强与前后各章教学内容的联系, 注意复习和应用已学内容, 并为后续章节教学内容做 好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的 学习和巩固。 本章内容处理三角形中的边角关系, 与初中学习的三角形的边与角的基本关系, 已知三 角形的边和角相等判定三角形全等的知识有着密切联系。 教科书在引入正弦定理内容时, 让 学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角 的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容 时, 提出探究性问题 “如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法, 这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就 是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从 联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知 识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置 相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知 识联系密切的内容, 这使这部分内容的处理有了比较多的工具, 某些内容可以处理得更加简 洁。 比如对于余弦定理的证明, 常用的方法是借助于三角的方法, 需要对于三角形进行讨论, 方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。 在证明了余弦定理及其推论以后, 教科书从余弦定理与勾股定理的比较中, 提出了一个 思考问题 “勾股定理指出了直角三角形中三边平方之间的关系, 余弦定理则指出了一般三角 形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理 以及余弦函数的性质可知, 如果一个三角形两边的平方和等于第三边的平方, 那么第三边所 对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平 方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.” 3.重视加强意识和数学实践能力 学数学的最终目的是应用数学, 而如今比较突出的两个问题是, 学生应用数学的意识不 强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用 到实际问题中去, 对所学数学知识的实际背景了解不多, 虽然学生机械地模仿一些常见数学 问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、 类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情 况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。 (三)教学内容及课时安排建议 1.1 正弦定理和余弦定理(约 3 课时) 1.2 应用举例(约 4 课时) 1.3 实习作业(约 1 课时) (四)评价建议 1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对 于正弦定理和余弦定理的证明的探究过程中, 应该因势利导, 根据具体教学过程中学生思考 问题的方向来启发学生得到自己对于定理的证明。 如对于正弦定理, 可以启发得到有应用向 量方法的证明, 对于余弦定理则可以启发得到三角方法和解析的方法。 在应用两个定理解决 有关的解三角形和测量问题的过程中, 一个问题也常常有多种不同的解决方案, 应该鼓励学 生提出自己的解决办法, 并对于不同的方法进行必要的分析和比较。 对于一些常见的测量问 题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。 2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题 的解决实际问题的能力、 动手操作的能力以及用数学语言表达实习过程和实习结果能力, 增 强学生应用数学的意识和数学实践能力。 教师要注意对于学生实习作业的指导, 包括对于实 际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

第 1 课时
课题:

§1.1.1 正弦定理

●教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索, 掌握正弦定理的内容及其证明方法; 会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系, 引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实 践操作。 情感态度与价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力; 培养学生合 情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识 间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图 1.1-1,固定 ? ABC 的边 CB 及 ? B,使边 AC 绕着顶点 C 转动。 A 思考: ? C 的大小与它的对边 AB 的长度之间有怎样的数量关系? 显然,边 AB 的长度随着其对角 ? C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图 1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等 式关系。如图 1.1-2,在 Rt ? ABC 中,设 BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数 的 A 则 定 义 , 有

a ? sin A c
?



b ? sin B c





s

Ci ? n ?

c c

,1

a
sin A

?

b
sin B

c
sinC

?c ?

b

c a (图 1.1-2) B

从而在直角三角形 ABC 中,

a
sin A

b
sin B

?

c
sin C

C

思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图 1.1-3,当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的 定义,有 CD= a sin B ? b sin A ,则 同理可得 从而

a
sin A

?

b
sin B

, b A c

C a B

c
sinC ?

?

b
sin B ?



a
sin A

b
sin B

c
sin C

(图 1.1-3) 思考: 是否可以用其它方法证明这一等式?由于涉及边长问题, 从而可以考虑用向量来研究 这个问题。

(证法二):过点 A 作 j ? AC , 由向量的加法可得 则

C

AB ? AC ? CB

j ? AB ? j ?(AC ? CB )
∴ j ? AB ? j ? AC ? j ? CB

A

B

j

j AB cos?900 ? A? ?0 ? j CB cos?900 ?C ?
∴ c sin A ? a sin C ,即 同理,过点 C 作 j ? BC ,可得 从而

a c ? sin A sin C

b c ? sin B sin C

a
sin A

?

b
sin B

?

c
sin C

类似可推出,当 ? ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导) 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a
sin A

?

b
sin B

?

c
sin C

[理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ? k sin A , b ? k sin B , c ? k sinC ; (2)

a
sin A

?

b
sin B

?

c
sin C

等价于

a
sin A

?

b
sin B



c
sinC

?

b
sin B



a
sin A

?

c
sinC

从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如 a ?

b sin A ; sin B

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 sin A ? sin B 。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析] 例 1.在 ?ABC 中,已知 A ? 32.00 , B ? 81.80 , a ? 42.9 cm,解三角形。 解:根据三角形内角和定理,

a b

C ?1800 ? ( A? B) ?1800 ? (32.00 ?81.80 )
? 66.20 ; 根据正弦定理, a sin B 42.9sin81.80 b? ? ? 80.1(cm) ; sin A sin32.00
根据正弦定理,

c?

a sin C 42.9sin66.20 ? ? 74.1(cm). sin A sin32.00

评述:对于解三角形中的复杂运算可使用计算器。 例 2.在 ?ABC 中,已知 a ? 20 cm, b ? 28 cm, A ? 400 ,解三角形(角度精确到 10 ,边 长精确到 1cm)。 解:根据正弦定理,

bsin A 28sin400 ? ? 0.8999. a 20 因为 00 < B < 1800 ,所以 B ? 640 ,或 B ?1160. ⑴ 当 B ? 640 时, sin B ?
C ?1800 ? ( A? B) ?1800 ? (400 ? 640 ) ? 760 ,
c? a sin C 20sin760 ? ? 30(cm). sin A sin400

⑵ 当 B ?1160 时,

C ?1800 ? ( A? B) ?1800 ? (400 ?1160 ) ? 240 ,
c? a sin C 20sin240 ? ?13(cm). sin A sin400

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 Ⅲ.课堂练习 第 4 页练习第 1(1)、2(1)题。 [补充练习]已知 ? ABC 中, sin A:sin B :sinC ? 1:2:3 ,求 a :b :c (答案:1:2:3) Ⅳ.课时小结(由学生归纳总结) (1)定理的表示形式:

a

sin A sin B sinC 或 a ? k sin A , b ? k sin B , c ? k sinC (k ? 0)
(2)正弦定理的应用范围: ①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。 Ⅴ.课后作业 第 10 页[习题 1.1]A 组第 1(1)、2(1)题。

?

b

?

c

?

a ? b ?c ? k ? k ? 0? ; sin A ? sin B ? sinC

第 2 课时

课题:

§1.1.2 余弦定理

●教学目标 知识与技能: 掌握余弦定理的两种表示形式及证明余弦定理的向量方法, 并会运用余弦定理 解决两类基本的解三角形问题。 过程与方法: 利用向量的数量积推出余弦定理及其推论, 并通过实践演算掌握运用余弦定理 解决两类基本的解三角形问题 情感态度与价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力; 通过三角函 数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 ●教学重点 余弦定理的发现和证明过程及其基本应用; ●教学难点 勾股定理在余弦定理的发现和证明过程中的作用。 ●教学过程 Ⅰ.课题导入 C 如图 1.1-4,在 ? ABC 中,设 BC=a,AC=b,AB=c, 已知 a,b 和 ? C,求边 c A Ⅱ.讲授新课 [探索研究] 联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因 A、B 均未知,所以较难求边 c。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 如图 1.1-5,设 CB ? a , CA ? b , AB ? c ,那么 c ? a ? b ,则 b c (图 1.1-4) a B

A

b

c

c ? c ?c ? a ? b a ? b ? a ? a ? b ? b ? 2a ? b 2 2 ? a ? b ? 2a ? b
从而

2

?

??

?
C

a

B

c 2 ? a 2 ? b 2 ? 2ab cosC

(图 1.1-5)

同理可证 于是得到以下定理

a 2 ? b 2 ? c 2 ? 2bc cos A
b 2 ? a 2 ? c 2 ? 2ac cos B

余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角 的余弦的积的两倍。即

a 2 ? b 2 ? c 2 ? 2bc cos A
b 2 ? a 2 ? c 2 ? 2ac cos B c 2 ? a 2 ? b 2 ? 2ab cosC

思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由

三边求出一角? (由学生推出)从余弦定理,又可得到以下推论:

cos A? cos B ? cosC ?

b2 ? c 2 ? a 2 2bc a 2 ? c 2 ? b2 2ac b2 ? a 2 ? c 2 2ba

[理解定理] 从而知余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。 思考: 勾股定理指出了直角三角形中三边平方之间的关系, 余弦定理则指出了一般三角 形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若 ? ABC 中,C= 90 0 ,则 cosC ? 0 ,这时 c 2 ? a 2 ? b2 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 [例题分析] 例 1.在 ? ABC 中,已知 a ? 2 3 , c ? 6 ? 2 , B ? 600 ,求 b 及 A ⑴解:∵ b 2 ? a 2 ? c 2 ? 2ac cos B = (2 3)2 ? ( 6 ? 2)2 ? 2?2 3 ?( 6 ? 2) cos 450 = 12 ? ( 6 ? 2)2 ? 4 3( 3 ?1) =8 ∴ b ? 2 2. 求 A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos A ? ∴ A ? 600.

b2 ? c 2 ? a 2 (2 2)2 ? ( 6 ? 2 )2 ? (2 3)2 1 ? ? , 2bc 2 2? 2 2 ?( 6 ? 2)

a 2 3 ?sin450 , 解法二:∵sin A ? sin B ? b 2 2
又∵ 6 ? 2 > 2.4 ?1.4 ? 3.8,

2 3 < 2?1.8 ? 3.6,
∴ a < c ,即 00 < A < 90 0 , ∴ A ? 600. 评述:解法二应注意确定 A 的取值范围。 例 2.在 ? ABC 中,已知 a ?134.6cm , b ? 87.8cm , c ?161.7cm ,解三角形 (见课本第 7 页例 4,可由学生通过阅读进行理解)

解:由余弦定理的推论得: cos A?

b2 ? c 2 ? a 2 2bc

87.82 ?161.72 ?134.62 2?87.8?161.7 ? 0.5543, A ? 56020? ; ?
cos B ?

c 2 ? a 2 ? b2 2ca

134.62 ?161.72 ?87.82 2?134.6?161.7 ? 0.8398, B ? 32053? ; ?
? C ?1800 ? ( A? B) ?1800 ? (56020? ? 32053)
Ⅲ.课堂练习 第 8 页练习第 1(1)、2(1)题。 [补充练习]在 ? ABC 中,若 a 2 ? b 2 ? c 2 ? bc ,求角 A(答案:A=120 0 ) Ⅳ.课时小结 (1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 Ⅴ.课后作业 ①课后阅读:课本第 8 页[探究与发现] ②课时作业:第 11 页[习题 1.1]A 组第 3(1),4(1)题。

第 3 课时

课题:

§1.1.3 解三角形的进一步讨论

●教学目标 知识与技能: 掌握在已知三角形的两边及其中一边的对角解三角形时, 有两解或一解或无解 等情形;三角形各种类型的判定方法;三角形面积定理的应用。 过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理, 三角函数公式及三角形有关性质求解三角形问题。 情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角 函数的关系, 反映了事物之间的必然联系及一定条件下相互转化的可能, 从而从本质上反映 了事物之间的内在联系。 ●教学重点 在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。 ●教学难点 正、余弦定理与三角形的有关性质的综合运用。 ●教学过程 Ⅰ.课题导入 [创设情景] 思考:在 ? ABC 中,已知 a ? 22 cm , b ? 25cm , A ? 1330 ,解三角形。 (由学生阅读课本第 9 页解答过程) 从此题的分析我们发现, 在已知三角形的两边及其中一边的对角解三角形时, 在某些条 件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。 Ⅱ.讲授新课 [探索研究] b ,A ,讨论三角形解的情况 例 1.在 ? ABC 中,已知 a , 分析:先由 sin B ? 则 C ? 1800 ?(A ? B ) 从而 c ?

b sin A 可进一步求出 B; a

a sinC A

1.当 A 为钝角或直角时,必须 a ? b 才能有且只有一解;否则无解。 2.当 A 为锐角时, 如果 a ≥ b ,那么只有一解; 如果 a ? b ,那么可以分下面三种情况来讨论: (1)若 a ? b sin A ,则有两解; (2)若 a ? b sin A ,则只有一解; (3)若 a ? b sin A ,则无解。 (以上解答过程详见课本第 9 10 页) 评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当 A 为锐角且 b sin A ? a ? b 时,有两解;其它情况时则只有一解或无解。 [随堂练习 1] (1)在 ? ABC 中,已知 a ? 80 , b ? 100 , ?A ? 450 ,试判断此三角形的解的情况。

(2)在 ? ABC 中,若 a ? 1 , c ?

1 , ?C ? 400 ,则符合题意的 b 的值有_____个。 2

(3)在 ? ABC 中, a ? xcm , b ? 2 cm , ?B ? 450 ,如果利用正弦定理解三角形有两解,求 x 的取值范围。 (答案:(1)有两解;(2)0;(3) 2 ? x ? 2 2 ) 例 2.在 ? ABC 中,已知 a ? 7 , b ? 5 , c ? 3 ,判断 ? ABC 的类型。 分析:由余弦定理可知

a 2 ? b 2 ? c 2 ? A是直角 ? ?ABC是直角三角形 a 2 ? b 2 ? c 2 ? A是钝角 ? ?ABC是钝角三角形 a 2 ? b 2 ? c 2 ? A是锐角? ?ABC是锐角三角形
(注意: A是锐角? ?ABC是锐角三角形 ) 解: 72 ? 52 ? 32 ,即 a 2 ? b 2 ? c 2 , ∴ ?ABC是钝角三角形 。 [随堂练习 2] (1)在 ? ABC 中,已知 sin A:sin B :sinC ? 1:2:3 ,判断 ? ABC 的类型。 (2)已知 ? ABC 满足条件 a cosA ? b cosB ,判断 ? ABC 的类型。 (答案:(1) ?ABC是钝角三角形 ;(2) ? ABC 是等腰或直角三角形) 例 3.在 ? ABC 中, A ? 600 , b ? 1 ,面积为

3 a ? b ?c ,求 的值 2 sin A ? sin B ? sinC 1 1 1 分析:可利用三角形面积定理 S ? ab sinC ? ac sin B ? bc sin A 以及正弦定理 2 2 2

a
sin A

?

b
sin B

?

c
sinC

?

a ? b ?c sin A ? sin B ? sinC

1 3 解:由 S ? bc sin A ? 得c ? 2 , 2 2
则 a 2 ? b 2 ? c 2 ? 2bc cos A =3,即 a ? 3 ,

从而

a ? b ?c a ? ?2 sin A ? sin B ? sinC sin A

Ⅲ.课堂练习 (1)在 ? ABC 中,若 a ? 55 , b ? 16 ,且此三角形的面积 S ? 220 3 ,求角 C (2)在 ? ABC 中,其三边分别为 a、b、c,且三角形的面积 S ? (答案:(1) 600 或 1200 ;(2) 450 ) Ⅳ.课时小结 (1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法; (3)三角形面积定理的应用。

a 2 ? b 2 ?c 2
4

,求角 C

Ⅴ.课后作业 (1)在 ? ABC 中,已知 b ? 4 , c ? 10 , B ? 300 ,试判断此三角形的解的情况。 (2)设 x、x+1、x+2 是钝角三角形的三边长,求实数 x 的取值范围。 (3)在 ? ABC 中, A ? 600 , a ? 1 , b ?c ? 2 ,判断 ? ABC 的形状。 (4)三角形的两边分别为 3cm,5cm,它们所夹的角的余弦为方程 5x 2 ? 7x ? 6 ? 0 的根, 求这个三角形的面积。

第 4 课时
课题:

§2.2 解三角形应用举例

●教学目标 知识与技能: 能够运用正弦定理、 余弦定理等知识和方法解决一些有关测量距离的实际问题, 了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结 合学生的实际情况, 采用 “提出问题——引发思考——探索猜想——总结规律——反馈训练” 的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过 多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例 2 这样 的开放性题目要鼓励学生讨论, 开放多种思路, 引导学生发现问题并进行适当的指点和矫正 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用 图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点 根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问: 前面引言第一章 “解三角形” 中, 我们遇到这么一个问题, “遥 不可及的月亮离我们地球究竟有多远呢?” 在古代, 天文学家没有先进的仪器就已经估算出 了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度 等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借 助解直角三角形等等不同的方法, 但由于在实际测量问题的真实背景下, 某些方法会不能实 施。 如因为没有足够的空间, 不能用全等三角形的方法来测量, 所以, 有些方法会有局限性。 于是上面介绍的问题是用以前的方法所不能解决的。 今天我们开始学习正弦定理、 余弦定理 在科学实践中的重要应用,首先研究如何测量距离。 Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题 里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题讲解] (2)例 1、如图,设 A、B 两点在河的两岸,要测量两点之间的距离,测量者在 A 的同 侧,在所在的河岸边选定一点 C,测出 AC 的距离是 55m, ? BAC= 51 ? , ? ACB= 75 ? 。求 A、B 两点的距离(精确到 0.1m)

启发提问 1: ? ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问 2:运用该定理解题还需要那些边和角呢?请学生回答。 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条 件告诉了边 AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算 出 AC 的对角,应用正弦定理算出 AB 边。 解:根据正弦定理,得 AC AB = sin ?ACB sin ?ABC

AB = = = =

AC sin ?ACB sin ?ABC 55sin ?ACB sin ?ABC
55 sin 75? sin(180? ? 51? ? 75?)

55 sin 75? sin 54?

≈ 65.7(m) 答:A、B 两点间的距离为 65.7 米 变式练习: 两灯塔 A、 B 与海洋观察站 C 的距离都等于 a km,灯塔 A 在观察站 C 的北偏东 30 ? , 灯塔 B 在观察站 C 南偏东 60 ? ,则 A、B 之间的距离为多少? 老师指导学生画图,建立数学模型。 解略: 2 a km 例 2、如图,A、B 两点都在河的对岸(不可到达),设计一种测量 A、B 两点间距离的方法。 分析:这是例 1 的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造 三角形,所以需要确定 C、D 两点。根据正弦定理中已知三角形的任意两个内角与一边既可

求出另两边的方法,分别求出 AC 和 BC,再利用余弦定理可以计算出 AB 的距离。

解:测量者可以在河岸边选定两点 C、D,测得 CD=a,并且在 C、D 两点分别测得 ? BCA= ? ,

? ACD= ? , ? CDB= ? , ? BDA = ? ,在 ? ADC 和 ? BDC 中,应用正弦定理得
AC = BC =
a sin(? ? ? ) sin[180? ? ( ? ? ? ? ? )] a sin ? sin[180? ? (? ? ? ? ? )]

= =

a sin(? ? ? ) sin(? ? ? ? ? ) a sin ? sin(? ? ? ? ? )

计算出 AC 和 BC 后,再在 ? ABC 中,应用余弦定理计算出 AB 两点间的距离 AB =
AC 2 ? BC 2 ? 2 AC ? BC cos ?

分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。 变式训练: 若在河岸选取相距 40 米的 C、 D 两点, 测得 ? BCA=60 ? ,? ACD=30 ? ,? CDB=45 ? ,

? BDA =60 ?
略解:将题中各已知量代入例 2 推出的公式,得 AB=20 6 评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些 过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选 择最佳的计算方式。 学生阅读课本 4 页,了解测量中基线的概念,并找到生活中的相应例子。 Ⅲ.课堂练习 课本第 13 页练习第 1、2 题 Ⅳ.课时小结 解斜三角形应用题的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图 (2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建 立一个解斜三角形的数学模型 (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅴ.课后作业 课本第 19 页第 1、2、3 题

第 5 课时
课题:

§2.2 解三角形应用举例

●教学目标 知识与技能: 能够运用正弦定理、 余弦定理等知识和方法解决一些有关底部不可到达的物体 高度测量的问题 过程与方法:本节课是解三角形应用举例的延伸。采用启发与尝试的方法,让学生在温故知 新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。通过 3 道例题的安排和练习 的训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目 的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。作业设计思考题,提供学 生更广阔的思考空间 情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括 的能力 ●教学重点 结合实际测量工具,解决生活中的测量高度问题 ●教学难点 能观察较复杂的图形,从中找到解决问题的关键条件 ●教学过程 Ⅰ.课题导入 提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞 机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题 Ⅱ.讲授新课 [范例讲解] 例 3、AB 是底部 B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度 AB 的方法。

分析:求 AB 长的关键是先求 AE,在 ? ACE 中,如能求出 C 点到建筑物顶部 A 的距离 CA,再 测出由 C 点观察 A 的仰角,就可以计算出 AE 的长。 解:选择一条水平基线 HG,使 H、G、B 三点在同一条直线上。由在 H、G 两点用测角仪器测 得 A 的仰角分别是 ? 、 ? ,CD = a,测角仪器的高是 h,那么,在 ? ACD 中,根据正弦定理

可得 AC = AB =
a sin ? sin(? ? ? )

= =

AE + h AC sin ? + h
a sin? sin ? + h sin(? ? ? )

例 4、如图,在山顶铁塔上 B 处测得地面上一点 A 的俯角 ? =54 ? 40? ,在塔底 C 处测得 A 处 的俯角 ? =50 ? 1? 。已知铁塔 BC 部分的高为 27.3 m,求出山高 CD(精确到 1 m)

师:根据已知条件,大家能设计出解题方案吗? (给时间给学生讨论思考) 若在 ? ABD 中求 CD, 则关键需要求出哪条边呢? 生:需求出 BD 边。 师:那如何求 BD 边呢? 生:可首先求出 AB 边,再根据 ? BAD= ? 求得。 解:在 ? ABC 中, ? BCA=90 ? + ? , ? ABC =90 ? - ? , ? BAC= ? - ? , ? BAD = ? .根据正弦定 理,

BC AB = sin(? ? ? ) sin(90 ? ? ? )

所以

AB =

BC sin(90? ? ? ) BC cos ? = sin(? ? ? ) sin(? ? ? )
BC cos ? sin? sin(? ? ? )

解 Rt ? ABD 中,得 BD =ABsin ? BAD= 将测量数据代入上式,得 BD =

27.3 cos 50?1? sin 54?40? sin(54?40? ? 50?1?)

=

27.3 cos 50?1? sin 54?40? sin 4?39?

≈177 (m) CD =BD -BC≈177-27.3=150(m) 答:山的高度约为 150 米. 师:有没有别的解法呢? 生:若在 ? ACD 中求 CD,可先求出 AC。 师:分析得很好,请大家接着思考如何求出 AC? 生:同理,在 ? ABC 中,根据正弦定理求得。(解题过程略) 例 5、如图,一辆汽车在一条水平的公路上向正东行驶,到 A 处时测得公路南侧远处一山顶 D 在东偏南 15 ? 的方向上,行驶 5km 后到达 B 处,测得此山顶在东偏南 25 ? 的方向上,仰角为 8 ? , 求此山的高度 CD.

师:欲求出 CD,大家思考在哪个三角形中研究比较适合呢? 生:在 ? BCD 中 师:在 ? BCD 中,已知 BD 或 BC 都可求出 CD,根据条件,易计算出哪条边的长? 生:BC 边 解:在 ? ABC 中, ? A=15 ? , ? C= 25 ? -15 ? =10 ? ,根据正弦定理,

BC AB = , sin A sin C
BC =

AB sin A 5 sin15? = sin10? sin C

≈ 7.4524(km) CD=BC ? tan ? DBC≈BC ? tan8 ? ≈1047(m) 答:山的高度约为 1047 米 Ⅲ.课堂练习 课本第 15 页练习第 1、2、3 题 Ⅳ.课时小结 利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的 背景资料中进行加工、抽取主要因素,进行适当的简化。 Ⅴ.课后作业

1、 课本第 19 页练习第 6、7、8 题 2、 为测某塔 AB 的高度,在一幢与塔 AB 相距 20m 的楼的楼顶处测得塔顶 A 的仰角为 30 ? , 测得塔基 B 的俯角为 45 ? ,则塔 AB 的高度为多少 m? 答案:20+

20 3 (m) 3

第 6 课时
课题: §2.2 解三角形应用举例 ●教学目标 知识与技能: 能够运用正弦定理、 余弦定理等知识和方法解决一些有关计算角度的实际问题 过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解, 这节课应通过综合训练强化学生的相应能力。除了安排课本上的例 1,还针对性地选择了既 具典型性有具启发性的 2 道例题, 强调知识的传授更重能力的渗透。 课堂中要充分体现学生 的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究 问题的过程中来,逐步让学生自主发现规律,举一反三。 情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过 程中激发学生的探索精神。 ●教学重点 能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系 ●教学难点 灵活运用正弦定理和余弦定理解关于角度的问题 ●教学过程 Ⅰ.课题导入 [创设情境] 提问: 前面我们学习了如何测量距离和高度, 这些实际上都可转化已知三角形的一些边和角 求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上 如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问 题。 Ⅱ.讲授新课 [范例讲解] 例 6、如图,一艘海轮从 A 出发,沿北偏东 75 ? 的方向航行 67.5 n mile 后到达海岛 B,然 后从 B 出发,沿北偏东 32 ? 的方向航行 54.0 n mile 后达到海岛 C.如果下次航行直接从 A 出 发到达 C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到 0.1 ? ,距离精确到 0.01n mile)

学生看图思考并讲述解题思路 教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出 AC 边所对的角 ? ABC, 即可用余弦定理算出 AC 边,再根据正弦定理算出 AC 边和 AB 边的夹角 ? CAB。 解:在 ? ABC 中, ? ABC=180 ? - 75 ? + 32 ? =137 ? ,根据余弦定理, AC= AB 2 ? BC 2 ? 2 AB ? BC ? cos ?ABC = 67.52 ? 54.0 2 ? 2 ? 67.5 ? 54.0 ? cos137? ≈113.15 根据正弦定理,
BC = sin ?CAB AC sin ?ABC AC

sin ? CAB = BC sin ?ABC =
54.0 sin 137 ? 113.15

≈0.3255, 所以

? CAB =19.0 ? ,
75 ? - ? CAB =56.0 ?

答:此船应该沿北偏东 56.1 ? 的方向航行,需要航行 113.15n mile 补充例 1、在某点 B 处测得建筑物 AE 的顶端 A 的仰角为 ? ,沿 BE 方向前进 30m,至点 C 处 测得顶端 A 的仰角为 2 ? ,再继续前进 10 3 m 至 D 点,测得顶端 A 的仰角为 4 ? ,求 ? 的大 小和建筑物 AE 的高。

师:请大家根据题意画出方位图。

生:上台板演方位图(上图) 教师先引导和鼓励学生积极思考解题方法, 让学生动手练习, 请三位同学用三种不同方法板 演,然后教师补充讲评。 解法一:(用正弦定理求解)由已知可得在 ? ACD 中, AC=BC=30, AD=DC=10 3 ,

? ADC =180 ? -4 ? ,
? 10 3 =
sin 2?

30 。 sin(180? ? 4? )

因为

sin4 ? =2sin2 ? cos2 ?

? cos2 ? =

3 ,得 2

2 ? =30 ?

? ? =15 ? , ?在 Rt ? ADE 中,AE=ADsin60 ? =15
答:所求角 ? 为 15 ? ,建筑物高度为 15m 解法二:(设方程来求解)设 DE= x,AE=h 在 Rt ? ACE 中,(10 3 + x) 2 + h 2 =30 2 在 Rt ? ADE 中,x 2 +h 2 =(10 3 ) 2 两式相减,得 x=5 3 ,h=15

?在 Rt ? ACE 中,tan2 ? = ?2 ? =30 ? , ? =15 ?

h 10 3 ? x

=

3 3

答:所求角 ? 为 15 ? ,建筑物高度为 15m 解法三:(用倍角公式求解)设建筑物高为 AE=8,由题意,得 ? BAC= ? , ? CAD=2 ? , AC = BC =30m , AD = CD =10 3 m 在 Rt ? ACE 中,sin2 ? = 在 Rt ? ADE 中,sin4 ? =

x 30
4 10 3
,

--------- ①

--------- ②

②?① 得

cos2 ? =

3 ,2 ? =30 ? , ? =15 ? ,AE=ADsin60 ? =15 2

答:所求角 ? 为 15 ? ,建筑物高度为 15m 补充例 2、某巡逻艇在 A 处发现北偏东 45 ? 相距 9 海里的 C 处有一艘走私船,正沿南偏东 75 ? 的方向以 10 海里/小时的速度向我海岸行驶, 巡逻艇立即以 14 海里/小时的速度沿着直 线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

师:你能根据题意画出方位图?教师启发学生做图建立数学模型 分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。 解: 如图, 设该巡逻艇沿 AB 方向经过 x 小时后在 B 处追上走私船, 则 CB=10x, AB=14x,AC=9, ? ACB= 75 ? + 45? = 120?

?(14x)

2

= 9 2 + (10x)

2

-2 ? 9 ? 10xcos 120?

3 9 ?化简得 32x 2 -30x-27=0,即 x= ,或 x=- (舍去) 2 16
所以 BC = 10x =15,AB =14x =21, 又因为 sin ? BAC =

BC sin120? 15 3 5 3 = = ? 2 AB 14 21

? ? BAC =38 ? 13? ,或 ? BAC =141 ? 47? (钝角不合题意,舍去), ?38 ? 13? + 45? =83 ? 13?
答:巡逻艇应该沿北偏东 83 ? 13? 方向去追,经过 1.4 小时才追赶上该走私船. 评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的 应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅲ.课堂练习 课本第 16 页练习 Ⅳ.课时小结 解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三 角形中,依次利用正弦定理或余弦定理解之。 (2)已知量与未知量涉及两个或几个三角形, 这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。 Ⅴ.课后作业

1、课本第 20 页练习第 9、10、11 题 2、我舰在敌岛 A 南偏西 50? 相距 12 海里的 B 处,发现敌舰正由岛沿北偏西 10? 的方向以 10 海里/小时的速度航行.问我舰需以多大速度、 沿什么方向航行才能用 2 小时追上敌舰? (角 度用反三角函数表示)

第 7 课时
课题:

§2.2 解三角形应用举例

●教学目标 知识与技能: 能够运用正弦定理、 余弦定理等知识和方法进一步解决有关三角形的问题, 掌 握三角形的面积公式的简单推导和应用 过程与方法:本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该 公式的特点, 循序渐进地具体运用于相关的题型。 另外本节课的证明题体现了前面所学知识 的生动运用, 教师要放手让学生摸索, 使学生在具体的论证中灵活把握正弦定理和余弦定理 的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维, 有利地进一步突破难点。 情感态度与价值观: 让学生进一步巩固所学的知识, 加深对所学定理的理解, 提高创新能力; 进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 ●教学重点 推导三角形的面积公式并解决简单的相关题目 ●教学难点 利用正弦定理、余弦定理来求证简单的证明题 ●教学过程 Ⅰ.课题导入 [创设情境] 师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

? ABC 中,边 BC、CA、AB 上的高分别记为 h a 、h b 、h c ,那么它们如何用已知边和角表

示? 生:h a =bsinC=csinB h b =csinA=asinC h c =asinB=bsinaA

1 ah,应用以上求出的高的公式如 h a =bsinC 代入, 2 1 可以推导出下面的三角形面积公式,S= absinC,大家能推出其它的几个公式吗? 2 1 1 生:同理可得,S= bcsinA, S= acsinB 2 2
师:根据以前学过的三角形面积公式 S= 师: 除了知道某条边和该边上的高可求出三角形的面积外, 知道哪些条件也可求出三角形的 面积呢? 生:如能知道三角形的任意两边以及它们夹角的正弦即可求解 Ⅱ.讲授新课 [范例讲解] 例 7、在 ? ABC 中,根据下列条件,求三角形的面积 S(精确到 0.1cm 2 ) (1)已知 a=14.8cm,c=23.5cm,B=148.5 ? ; (2)已知 B=62.7 ? ,C=65.8 ? ,b=3.16cm; (3)已知三边的长分别为 a=41.4cm,b=27.3cm,c=38.7cm 分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系, 我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求 出三角形的面积。 解:(1)应用 S= S=

1 acsinB,得 2

1 ? 14.8 ? 23.5 ? sin148.5 ? ≈90.9(cm 2 ) 2
b sin B

(2)根据正弦定理,

=

c sin C
sin B

c = b sin C S=

1 1 2 sin C sin A bcsinA = b 2 2 sin B

A = 180 ? -(B + C)= 180 ? -(62.7 ? + 65.8 ? )=51.5 ?

S=

sin 65.8 ? sin 51.5 ? 1 ≈4.0(cm 2 ) ? 3.16 2 ? sin 62.7 ? 2

(3)根据余弦定理的推论,得 cosB =

c2 ? a2 ? b2 2ca 2 38.7 ? 41.4 2 ? 27.3 2 = 2 ? 38.7 ? 41.4
≈0.7697

sinB = 应用 S= S ≈

1 ? cos 2 B ≈ 1 ? 0.7697 2 ≈0.6384
1 acsinB,得 2

1 ? 41.4 ? 38.7 ? 0.6384≈511.4(cm 2 ) 2

例 8、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量 得到这个三角形区域的三条边长分别为 68m,88m,127m,这个区域的面积是多少?(精确到 0.1cm 2 )? 师:你能把这一实际问题化归为一道数学题目吗? 生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。 由学生解答,老师巡视并对学生解答进行讲评小结。 解:设 a=68m,b=88m,c=127m,根据余弦定理的推论, cosB=

c2 ? a2 ? b2 2ca 2 127 ? 68 2 ? 88 2 = ≈0.7532 2 ? 127 ? 68

sinB= 1 ? 0.75322 ? 0.6578 应用 S=

1 acsinB 2 1 S ≈ ? 68 ? 127 ? 0.6578≈2840.38(m 2 ) 2

答:这个区域的面积是 2840.38m 2 。 例 3、在 ? ABC 中,求证: (1)

a 2 ? b 2 sin 2 A ? sin 2 B ? ; c2 sin 2 C

(2) a 2 + b 2 + c 2 =2(bccosA+cacosB+abcosC) 分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到 用正弦定理来证明 证明:(1)根据正弦定理,可设
a = b = c = k sin A sin B sin C

显然 k ? 0,所以 左边=

a 2 ? b 2 k 2 sin 2 A ? k 2 sin 2 B ? c2 k 2 sin 2 C sin 2 A ? sin 2 B =右边 sin 2 C

=

(2)根据余弦定理的推论, 右边=2(bc

b2 ? c2 ? a2 a2 ? b2 ? c2 c2 ? a2 ? b2 +ca +ab ) 2bc 2ca 2ab

=(b 2 +c 2 - a 2 )+(c 2 +a 2 -b 2 )+(a 2 +b 2 -c 2 ) =a 2 +b 2 +c 2 =左边 变式练习 1:已知在 ? ABC 中, ? B=30 ? ,b=6,c=6 3 ,求 a 及 ? ABC 的面积 S 提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。 答案:a=6,S=9 3 ;a=12,S=18 3 变式练习 2:判断满足下列条件的三角形形状, (1) acosA = bcosB (2) sinC =

sin A ? sin B cos A ? cos B

提示:利用正弦定理或余弦定理,“化边为角”或“化角为边” (1) 师:大家尝试分别用两个定理进行证明。 生 1:(余弦定理)得 a?

b2 ? c2 ? a2 c2 ? a2 ? b2 =b ? 2bc 2ca

?c 2 (a 2 ? b 2 ) ? a 4 ? b 4 = (a 2 ? b 2 )(a 2 ? b 2 ) ? a 2 ? b 2 或c 2 ? a 2 ? b 2 ?根据边的关系易得是等腰三角形或直角三角形
生 2:(正弦定理)得 sinAcosA=sinBcosB,

?sin2A=sin2B, ?2A=2B, ?A=B ?根据边的关系易得是等腰三角形

师:根据该同学的做法,得到的只有一种情况,而第一位同学的做法有两种,请大家思考, 谁的正确呢? 生:第一位同学的正确。第二位同学遗漏了另一种情况,因为 sin2A=sin2B,有可能推出 2A 与 2B 两个角互补,即 2A+2B=180 ? ,A+B=90 ? (2)(解略)直角三角形 Ⅲ.课堂练习 课本第 18 页练习第 1、2 题 Ⅳ.课时小结 利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式, 然后 化简并考察边或角的关系, 从而确定三角形的形状。 特别是有些条件既可用正弦定理也可用 余弦定理甚至可以两者混用。 Ⅴ.课后作业 课本第 20 页练习第 12、14、15 题

第 8 课时(复习课)
一.教学重点 1. 理解正弦定理及余弦定理的推导证明过程,能够熟练运用正、余弦定理解三角形。 2. 根据实际情况设计测量距离、高度、角度等的测量方案,并能利用正、余弦定理解 决实际问题 3. 灵活运用正、 余弦定理进行边角转化求角度、 判断三角形形状等有关三角形的问题。 二.教学难点:①正、余弦定理的推导证明,应用定理解三角形。②设计测量距离、高度、 角度等的测量方案,并能利用正、余弦定理解决实际问题,③在现实生活中灵活运用正、余 弦定理解决问题。进行边角转化 三.教学过程 1.本章知识结构框图 知两角及一边解三角形 用 正 解 三 角 形 弦 定 理 知两边及其中一边所对的角 解三角形(要讨论解的个数)

用 余 弦 定 解三角形的应用举例 理

知三边求三角

知道两边及这两边的夹角 解三解形

两点间距离的测量 物体高度的测量 角度的测量

2、例题讲解: 例 1.在 ?ABC 中,已知 B ? 45? , C ? 60? , c ? 1 。试求最长边的长度。 例 2.在 ?ABC 中,已知 a : b : c ? 3: 7 : 2 ,试判断此角形的形状并求出最大角与最小角的 和。 例 3.如图,我炮兵阵地位于 A 处,两观察所分别设于 C、D,已知 ?ABC 为边长等于 a 的 正三角形,当目标出现于 B 时,测得 ?CDB ? 45? , ?BCD ? 75? ,试求炮击目标的距离 AB。 三、巩固练习 D 1.在 ?ABC 中, sin A : sin B : sin C ? 3 : 2 : 4 试试判断此角形的形状并求出最小角。 2.在 ?ABC 中,a,b,c 分别是 A , B , C 的对边,且

B

C

cos B b ? cos C 2a ? c

A

(1)求角 B 的大小;(2)若 b ? 13, a ? c ? 4 ,求 a 的值。 3.a,b,c 分别是 ?ABC 的三边,若 a2 ? c2 ? b2 ? 3ac ,则角 B 为-------度。 4.测一塔(底不可到达)的高度,测量者在远处向塔前进,在 A 处测得塔顶 C 的仰角 40? , 再前进 20 米到 B 点,这时测得 C 的仰角为 60? ,试求此塔的高度 CD。

(第 1 课时)
课题 §2.1 数列的概念与简单表示法

●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式, 并会用通项公式写出数列的任意一项; 对于比较简单的数列, 会根据其前几项写出它的个通 项公式。 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察 能力和抽象概括能力.

情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 数列及其有关概念,通项公式及其应用 ●教学难点 根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 三角形数:1,3,6,10,? 正方形数:1,4,9,16,25,? Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序 不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第 1 项(或首项),第 2 项,?,第 n 项,?. 例如,上述例子均是数列,其中①中,“4”是这个数列的第 1 项(或首项),“9”是 这个数列中的第 6 项. ⒊数列的一般形式: a1 , a2 , a3 ,?, an ,?,或简记为 ?an ? ,其中 an 是数列的第 n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”, “

1 ”是这个数列的第“3”项,等等 3

王新敞
奎屯

新疆

下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关 系可否用一个公式表示? (引导学生进一步理解数列与项的定义, 从而发现数列的通项公式) 对于上面的数列②,第一项与这一项的序号有这样的对应关系: 1 1 1 1 1 项 2 3 4 5 ↓ 序号 1 ↓ 2 ↓ 3 ↓ 4 ↓ 5

这个数的第一项与这一项的序号可用一个公式: a n ?

1 来表示其对应关系 n

即:只要依次用 1,2,3?代替公式中的 n,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系 ⒋ 数列的通项公式: 如果数列 ?an ? 的第 n 项 an 与 n 之间的关系可以用一个公式来表示, 那么这个公式就叫做这个数列的通项公式. 注意:⑴并不是所有数列都能写出其通项公式,如上述数列④; ⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,?它的通项公式

n ?1 1 ? (?1) n ?1 ? |. 可以是 a n ? ,也可以是 a n ?| cos 2 2
⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的

一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列 便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系 数列可以看成以正整数集 N(或它的有限子集{1, 2, 3, ?, n}) 为定义域的函数 an ? f (n) ,
*

当自变量从小到大依次取值时对应的一列函数值。 反过来,对于函数 y=f(x),如果 f(i)(i=1、2、3、4?)有意义,那么我们可以得到一个数 列 f(1)、 f(2)、 f(3)、 f(4)?,f(n),? 6.数列的分类: 1)根据数列项数的多少分: 有穷数列:项数有限的数列.例如数列 1,2,3,4,5,6。是有穷数列 无穷数列:项数无限的数列.例如数列 1,2,3,4,5,6?是无穷数列 2)根据数列项的大小分: 递增数列:从第 2 项起,每一项都不小于它的前一项的数列。 递减数列:从第 2 项起,每一项都不大于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列 观察:课本 P33 的六组数列,哪些是递增数列,递减数列,常数数列,摆动数列? [范例讲解]课本 P34-35 例 1 Ⅲ.课堂练习课本 P36[练习]3、4、5 [补充练习]:根据下面数列的前几项的值,写出数列的一个通项公式: (1) 3, 5, 9, 17, 33,??; (3) 0, 1, 0, 1, 0, 1,??; 解:(1) an =2n+1; (2)

2 4 6 8 10 , , , , , ??; 3 15 35 63 99

(4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ??;

(2) an =

2n 1 ? (?1) n ; (3) an = ; (2n ? 1)(2n ? 1) 2

(4) 将数列变形为 1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ??,

1 ? (?1) n ∴ an =n+ ; 2
Ⅳ.课时小结 本节课学习了以下内容:数列及有关定义,会根据通项公式求其任意一项,并会根据数列的 前 n 项求一些简单数列的通项公式。 Ⅴ.课后作业 课本 P33 习题 2.1A 组的第 1 题

(第2课时)
题: §2.1 数列的概念与简单表示法 ●教学目标 知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公 式写出数列的前几项;理解数列的前 n 项和与 an 的关系

过程与方法:经历数列知识的感受及理解运用的过程。 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 根据数列的递推公式写出数列的前几项 ●教学难点 理解递推公式与通项公式的关系 ●教学过程 Ⅰ.课题导入 [复习引入] 数列及有关定义 Ⅱ.讲授新课 数列的表示方法 1、 通项公式法

如果数列 ?an ? 的第 n 项与序号之间的关系可以用一个公式来表示, 那么这个公式 就叫做这个数列的通项公式。
如数列 的通项公式为 的通项公式为 ; ;

的通项公式为



2、 图象法 启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 项 为纵坐标,即以

为横坐标,相应的

为坐标在平面直角坐标系中做出点(以前面提到的数列

为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横 坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可

以直观地看到数列的项随项数由小到大变化而变化的趋势. 3、 递推公式法 知识都来源于实践,最后还要应用于生活 用其来解决一些实际问题. 观察钢管堆放示意图,寻其规律,建立数学模型. 模型一:自上而下: 第 1 层钢管数为 4;即:1 ? 4=1+3 第 2 层钢管数为 5;即:2 ? 5=2+3 第 3 层钢管数为 6;即:3 ? 6=3+3 第 4 层钢管数为 7;即:4 ? 7=4+3 第 5 层钢管数为 8;即:5 ? 8=5+3 第 6 层钢管数为 9;即:6 ? 9=6+3
王新敞
奎屯 新疆

第 7 层钢管数为 10;即:7 ? 10=7+3 若用 an 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且 an ? n ? 3(1 ≤n≤7) 运用每一层的钢筋数与其层数之间的对应规律建立了数列模型, 运用这一关系, 会 很快捷地求出每一层的钢管数 这会给我们的统计与计算带来很多方便。 让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系 自上而下每一层的钢管数都比上一层钢管数多 1。
王新敞
奎屯 新疆

即 a1 ? 4 ; a2 ? 5 ? 4 ? 1 ? a1 ? 1 ; a3 ? 6 ? 5 ? 1 ? a2 ? 1 依此类推: an ? an?1 ? 1(2≤n≤7) 对于上述所求关系, 若知其第 1 项, 即可求出其他项, 看来, 这一关系也较为重要。 定义: 递推公式:如果已知数列 ?an ? 的第 1 项(或前几项),且任一项 an 与它的前一项 a n ?1 (或 前 n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 递推公式也是给出数列的一种方法。 如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为: a1 ? 3, a2 ? 5, an ? an?1 ? an?2 (3 ? n ? 8) 数列可看作特殊的函数, 其表示也应与函数的表示法有联系, 首先请学生回忆函数的表示法: 列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 示第一项,用 4、列表法
.简记为 .



表示第一项,??,用

表示第

项,依次写出成为

[范例讲解]

a1 ? 1 ? ? 例 3 设数列 ?an ? 满足 ? 写出这个数列的前五项。 1 ?an ? 1 ? a (n ? 1). n ?1 ?
解:分析:题中已给出 ?an ? 的第 1 项即 a1 ? 1 ,递推公式: a n ? 1 ?

1 an?1

解:据题意可知: a1 ? 1, a 2 ? 1 ? [补充例题]

1 1 2 1 5 8 ? 2, a3 ? 1 ? ? , a4 ? 1 ? ? , a5 ? a1 a2 3 a3 3 5

例 4 已知 a1 ? 2 , an?1 ? 2an 写出前 5 项,并猜想 an .

法一: a1 ? 2

a2 ? 2 ? 2 ? 2 2

a3 ? 2 ? 22 ? 23 ,观察可得 an ? 2 n


法二:由 an?1 ? 2an

∴ an ? 2an?1

an ?2 a n ?1



an an?1 an?2 a ? ? ? ??? 2 ? 2 n?1 an?1 an?2 an?3 a1

∴ an ? a1 ? 2n?1 ? 2 n Ⅲ.课堂练习 课本 P31 练习 2 [补充练习] 1.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式 (1) a1 =0, a n ?1 = an +(2n-1) (n∈N); (2) a1 =1, a n ?1 =

2a n (n∈N); an ? 2

(3) a1 =3, a n ?1 =3 an -2 (n∈N). 解:(1) a1 =0, a2 =1, a3 =4, a4 =9, a5 =16, ∴ an =(n-1) ; (2) a1 =1, a2 =
2

1 2 1 2 2 2 2 , a3 = ? , a4 = , a5 = ? , ∴ an = ; 3 5 n ?1 2 4 3 6
0 1 2

(3) a1 =3=1+2 ? 3 , a2 =7=1+2 ? 3 , a3 =19=1+2 ? 3 ,

a4 =55=1+2 ? 3 3 , a5 =163=1+2 ? 3 4 , ∴ an =1+2·3 n ?1 ;
Ⅳ.课时小结 本节课学习了以下内容: 1.递推公式及其用法; 2.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或 n 项)之间的关系. Ⅴ.课后作业 习题 2。1A 组的第 4、6 题

(第 3 课时)
课题: §2.2 等差数列 ●教学目标

知识与技能:了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个 数列是等差数列; 正确认识使用等差数列的各种表示法, 能灵活运用通项公式求等差数列的 首项、公差、项数、指定的项 过程与方法:经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。 情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积 极思维,追求新知的创新意识。 ●教学重点 等差数列的概念,等差数列的通项公式。 ●教学难点 等差数列的性质 ●教学过程 Ⅰ.课题导入 [创设情境] 上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项 公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。下面我们看这样一些例 子。 课本 P41 页的 4 个例子: ①0,5,10,15,20,25,? ②48,53,58,63 ③18,15.5,13,10.5,8,5.5 ④10072,10144,10216,10288,10366 观察:请同学们仔细观察一下,看看以上四个数列有什么共同特征? ·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每 相邻两项的差相等——应指明作差的顺序是后项减前项) , 我们给具有这种特征的数列一个 名字——等差数列 Ⅱ.讲授新课 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数, 这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。 ⑴.公差 d 一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{ an },若 an - a n ?1 =d (与 n 无关的数或字母),n≥2,n∈N ,则此数列 是等差数列,d 为公差。 思考:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么? 2.等差数列的通项公式: an ? a1 ? (n ? 1)d 【或 a n ? am ? (n ? m)d 】 等差数列定义是由一数列相邻两项之间关系而得 若一等差数列 ?an ? 的首项是 a1 ,公
王新敞
奎屯 新疆

?

差是 d,则据其定义可得:

a2 ? a1 ? d 即: a2 ? a1 ? d

a3 ? a2 ? d 即: a3 ? a2 ? d ? a1 ? 2d
a4 ? a3 ? d 即: a4 ? a3 ? d ? a1 ? 3d

?? 由此归纳等差数列的通项公式可得: an ? a1 ? (n ? 1)d ∴已知一数列为等差数列,则只要知其首项 a1 和公差 d,便可求得其通项 an 。 由上述关系还可得: am ? a1 ? (m ? 1)d 即: a1 ? am ? (m ? 1)d 则: a n ? a1 ? (n ? 1)d = am ? (m ? 1)d ? (n ? 1)d ? am ? (n ? m)d 即等差数列的第二通项公式 [范例讲解] 例 1 ⑴求等差数列 8,5,2?的第 20 项 ⑵ -401 是不是等差数列-5,-9,-13?的项?如果是,是第几项? 解:⑴由 a1 ? 8, d ? 5 ? 8 ? 2 ? 5 ? ?3 ⑵由 a1 ? ?5, d ? ?9 ? (?5) ? ?4 n=20,得 a20 ? 8 ? (20 ? 1) ? (?3) ? ?49 得数列通项公式为: an ? ?5 ? 4(n ? 1)

an ? am ? (n ? m)d

∴ d=

am ? an m?n

由题意可知, 本题是要回答是否存在正整数 n, 使得 ? 401? ?5 ? 4(n ? 1) 成立解之得 n=100, 即-401 是这个数列的第 100 项 例 3 已知数列{ an }的通项公式 an ? pn ? q ,其中 p 、 q 是常数,那么这个数列是否一定 是等差数列?若是,首项与公差分别是什么? 分析:由等差数列的定义,要判定 ?an ? 是不是等差数列,只要看 an ? an?1 (n≥2)是不 是一个与 n 无关的常数。 解:当 n≥2 时, (取数列 ?an ? 中的任意相邻两项 a n ?1 与 an (n≥2))

an ? an?1 ? ( pn ? q) ? [ p(n ? 1) ? q] ? pn ? q ? ( pn ? p ? q) ? p 为常数
∴{ an }是等差数列,首项 a1 ? p ? q ,公差为 p。 注:①若 p=0,则{ an }是公差为 0 的等差数列,即为常数列 q,q,q,… ②若 p≠0, 则{ an }是关于 n 的一次式,从图象上看,表示数列的各点均在一次函数 y=px+q 的图象上,一次项的系数是公差,直线在 y 轴上的截距为 q. ③数列{ an }为等差数列的充要条件是其通项 an =pn+q (p、q 是常数),称其为第 3

通项公式。 ④判断数列是否是等差数列的方法是否满足 3 个通项公式中的一个。 Ⅲ.课堂练习 课本 P39 练习 1、2、3、4 [补充练习] 1.(1)求等差数列 3,7,11,??的第 4 项与第 10 项. 分析:根据所给数列的前 3 项求得首项和公差,写出该数列的通项公式,从而求出所求 项. 解: 根据题意可知: (n-1) ×4,即 an =4n a1 =3,d=7-3=4.∴该数列的通项公式为: an =3+ -1(n≥1,n∈N*)∴ a4 =4×4-1=15, a10 =4×10-1=39. 评述:关键是求出通项公式. (2)求等差数列 10,8,6,??的第 20 项. 解:根据题意可知: a1 =10,d=8-10=-2. ∴该数列的通项公式为: (n-1) × (-2) ,即: an =10+ an =-2n+12,∴ a 20 =-2×20+12= -28. 评述:要注意解题步骤的规范性与准确性. (3)100 是不是等差数列 2,9,16,??的项?如果是,是第几项?如果不是,说明 理由. 分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数 n 值,使得 an 等于这一数. 解:根据题意可得: a1 =2,d=9-2=7. -5. 令 7n-5=100,解得:n=15, ∴100 是这个数列的第 15 项. (4)-20 是不是等差数列 0,-3 说明理由. 解:由题意可知: a1 =0,d=-3 令- ∴此数列通项公式为: an =2+(n-1)×7=7n

1 ,-7,??的项?如果是,是第几项?如果不是, 2
∴此数列的通项公式为: an =-

1 2

7 7 n+ , 2 2

7 7 47 n+ =-20,解得 n= 2 2 7

因为-

7 7 n+ =-20 没有正整数解,所以-20 不是这 2 2

个数列的项. Ⅳ.课时小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式: an - a n ?1 =d ,(n ≥2,n∈N ).其次,要会推导等差数列的通项公式: an ? a1 ? (n ? 1)d ,并掌握其基本应 用.最后,还要注意一重要关系式: a n ? am ? (n ? m)d 和 an =pn+q (p、q 是常数)的理解
?

与应用. Ⅴ.课后作业 课本 P40 习题 2.2[A 组]的第 1 题

(第 4 课时)
课题: §2.2 等差数列

●教学目标 知识与技能: 明确等差中项的概念; 进一步熟练掌握等差数列的通项公式及推导公式, 能通 过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题。 过程与方法:通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差 数列通项公式的运用,渗透方程思想。 情感态度与价值观:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系, 从而渗透特殊与一般的辩证唯物主义观点。 ●教学重点 等差数列的定义、通项公式、性质的理解与应用 ●教学难点 灵活应用等差数列的定义及性质解决一些相关问题 ●教学过程 Ⅰ.课题导入 首先回忆一下上节课所学主要内容: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个 常数,即 an - a n ?1 =d ,(n≥2,n∈N ),这个数列就叫做等差数列,这个常数就叫做等 差数列的公差(常用字母“d”表示) 2.等差数列的通项公式:
王新敞
奎屯 新疆

?

an ? a1 ? (n ? 1)d

( a n ? am ? (n ? m)d 或 an =pn+q (p、q 是常数))

3.有几种方法可以计算公差 d ① d= an - a n ?1 ② d=

a n ? a1 n ?1

③ d=

an ? am n?m

Ⅱ.讲授新课 问题:如果在 a 与 b 中间插入一个数 A,使 a ,A, b 成等差数列数列,那么 A 应满足什么 条件? 由定义得 A- a = b -A 反之,若 A ? ,即: A ?

a?b 2

a?b ,则 A- a = b -A 2

由此可可得: A ? [补充例题]

a?b ? a, b, 成等差数列 2

例 在等差数列{ an }中,若 a1 + a6 =9, a4 =7, 求 a3 , a9 . 分析:要求一个数列的某项,通常情况下是先求其通项公式,而要求通项公式,必须知 道这个数列中的至少一项和公差,或者知道这个数列的任意两项(知道任意两项就知道公 差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手?? 解:∵ {an }是等差数列 ∴ a1 + a6 = a4 + a3 =9 ? a3 =9- a4 =9-7=2

∴ d= a4 - a3 =7-2=5

∴ a9 = a4 +(9-4)d=7+5*5=32 [范例讲解] 课本 P38 的例 2 解略 课本 P39 练习 5 已知数列{ an }是等差数列

∴ a3 =2, a9 =32

(1) 2a5 ? a3 ? a7 是否成立? 2a5 ? a1 ? a9 呢?为什么? (2) 2an ? an?1 ? an?1 (n ? 1) 是否成立?据此你能得到什么结论? (3) 2an ? an?k ? a n?k (n ? k ? 0) 是否成立??你又能得到什么结论? 结论:(性质)在等差数列中,若 m+n=p+q,则, am ? an ? a p ? aq 即 m+n=p+q ? am ? an ? a p ? aq (m, n, p, q ∈N ) 但通常 ①由 am ? an ? a p ? aq 推不出 m+n=p+q ,② am ? an ? am?n 探究:等差数列与一次函数的关系 Ⅲ.课堂练习 1.在等差数列 ?an ? 中,已知 a5 ? 10 , a12 ? 31 ,求首项 a1 与公差 d 2. 在等差数列 ?an ? 中, 若 a5 ? 6 Ⅳ.课时小结 节课学习了以下内容:

a8 ? 15 求 a14

1. A ?

a?b ? a, A, b, 成等差数列 2

2.在等差数列中, m+n=p+q ? am ? an ? a p ? aq (m, n, p, q ∈N ) Ⅴ.课后作业 课本 P41 第 4、5 题

(第 5 课时)
课题: §2.3

等差数列的前 n 项和

●教学目标 知识与技能: 掌握等差数列前 n 项和公式及其获取思路; 会用等差数列的前 n 项和公式解决 一些简单的与前 n 项和有关的问题 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的 思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对 学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美。 ●教学重点 等差数列 n 项和公式的理解、推导及应 ●教学难点 灵活应用等差数列前 n 项公式解决一些简单的有关问题 ●教学过程 Ⅰ.课题导入 “小故事”: 高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在 给大家出道题目: 1+2+?100=?” 过了两分钟,正当大家在: 1+2=3; 3+3=6; 4+6=10?算得不亦乐乎时, 高斯站起来回答说: “1+2+3+?+100=5050。 教师问:“你是如何算出答案的? 高斯回答说:因为 1+100=101; 2+99=101;?50+51=101,所以 101×50=5050” 这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现 和寻找出某些规律性的东西。 (2)该故事还告诉我们求等差数列前 n 项和的一种很重要的思想方法,这就是下面我们要 介绍的“倒序相加”法。 Ⅱ.讲授新课 1.等差数列的前 n 项和公式 1: S n ?

n(a1 ? a n ) 2

证明:

S n ? a1 ? a2 ? a3 ? ? ? an?1 ? an



S n ? an ? an?1 ? an?2 ? ? ? a2 ? a1 ②
①+②: 2S n ? (a1 ? an ) ? (a2 ? an?1 ) ? (a3 ? an?2 ) ? ? ? (an ? an ) ∵ a1 ? an ? a2 ? an?1 ? a3 ? an?2 ? ?? ∴ 2S n ? n(a1 ? an ) 由此得: S n ?

n(a1 ? a n ) 2
王新敞
奎屯 新疆

从而我们可以验证高斯十岁时计算上述问题的正确性 2. 等差数列的前 n 项和公式 2: S n ? na1 ?

n(n ? 1)d 2

用上述公式要求 S n 必须具备三个条件: n, a1 , an 但 an ? a1 ? (n ? 1)d 代入公式 1 即得: S n ? na1 ?

n(n ? 1)d 2

此公式要求 S n 必须已知三个条件: n, a1 , d (有时比较有用) [范例讲解] 课本 P43-44 的例 1、例 2、例 3 由例 3 得与 an 之间的关系: 由 S n 的定义可知,当 n=1 时, S1 = a1 ;当 n≥2 时, an = S n - S n ?1 , 即 an = ?

?S1 (n ? 1) . S ? S ( n ? 2 ) n ?1 ? n

Ⅲ.课堂练习 课本 P45 练习 1、2、3、4 Ⅳ.课时小结 本节课学习了以下内容: 1.等差数列的前 n 项和公式 1: S n ?

n(a1 ? a n ) 2
n(n ? 1)d 2

2.等差数列的前 n 项和公式 2: S n ? na1 ? Ⅴ.课后作业 课本 P46 习题[A 组]2、3 题

(第 6 课时)
课题: §2.3 等差数列的前

n 项和

●教学目标 知识与技能: 进一步熟练掌握等差数列的通项公式和前 n 项和公式; 了解等差数列的一些性 质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的

最值; 过程与方法:经历公式应用的过程; 情感态度与价值观:通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活, 又服务于生活的实用性, 引导学生要善于观察生活, 从生活中发现问题, 并数学地解决问题。 ●教学重点 熟练掌握等差数列的求和公式 ●教学难点 灵活应用求和公式解决问题 ●教学过程 Ⅰ.课题导入 首先回忆一下上一节课所学主要内容: 1.等差数列的前 n 项和公式 1: S n ?

n(a1 ? a n ) 2
n(n ? 1)d 2

2.等差数列的前 n 项和公式 2: S n ? na1 ? Ⅱ.讲授新课 探究:——课本 P51 的探究活动

结论:一般地,如果一个数列 ?a n ?, 的前 n 项和为 Sn ? pn ? qn ? r ,其中 p、q、r 为常数,
2

且 p ? 0 ,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? 由 Sn ? pn ? qn ? r ,得 S1 ? a1 ? p ? q ? r
2

当 n ? 2 时 an ? Sn ? Sn?1 = ( pn ? qn ? r ) ? [ p(n ?1) ? q(n ?1) ? r ] = 2 pn ? ( p ? q)
2 2

?d ? an ? an?1 ? [2 pn ? ( p ? q)] ? [2 p(n ?1) ? ( p ? q)] =2p

对等差数列的前 n 项和公式2: S n ? na1 ?

n(n ? 1)d 可化成式子: 2

Sn ?

d 2 d n ? (a 1 ? )n ,当 d≠0,是一个常数项为零的二次式 2 2

[范例讲解] 等差数列前项和的最值问题 课本 P45 的例 4 解略 小结: 对等差数列前项和的最值问题有两种方法: (1) 利用 an : 当 an >0,d<0,前n项和有最大值 可由 an ≥0,且 a n ?1 ≤0,求得n的值
王新敞
奎屯 新疆

王新敞
奎屯

新疆

当 an <0,d>0,前n项和有最小值 可由 an ≤0,且 a n ?1 ≥0,求得n的值
王新敞
奎屯 新疆

王新敞
奎屯

新疆

(2) 利用 S n : 由 Sn ?

d 2 d n ? (a 1 ? )n 利用二次函数配方法求得最值时 n 的值 2 2

Ⅲ.课堂练习 1.一个等差数列前 4 项的和是 24,前 5 项的和与前 2 项的和的差是 27,求这个等差数列的 通项公式。 2.差数列{ an }中, a4 =-15, 公差 d=3, 求数列{ an }的前 n 项和 S n 的最小值。 Ⅳ.课时小结 1.前 n 项和为 Sn ? pn2 ? qn ? r ,其中 p、q、r 为常数,且 p ? 0 ,一定是等差数列,该 数列的 首项是 a1 ? p ? q ? r 公差是 d=2p 通项公式是 an ? ?

S1 ? a1 ? p ? q ? r , 当n ? 1 时 ? S n ? S n ?1 ? 2 pn ? ( p ? q ), 当n ? 2 时 ?

2.差数列前项和的最值问题有两种方法: (1)当 an >0,d<0,前n项和有最大值 可由 an ≥0,且 a n ?1 ≤0,求得n的值。
王新敞
奎屯 新疆

当 an <0,d>0,前n项和有最小值 可由 an ≤0,且 a n ?1 ≥0,求得n的值。
王新敞
奎屯 新疆

(2)由 S n ?

d 2 d n ? (a 1 ? )n 利用二次函数配方法求得最值时n的值 2 2

Ⅴ.课后作业 课本 P46 习题[A 组]的 5、6 题

(第 7 课时)
课题: §2.4 等比数列 ●教学目标 知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导; 过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能 在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数 的关系。 情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并 应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 ●教学重点 等比数列的定义及通项公式 ●教学难点 灵活应用定义式及通项公式解决相关问题 ●教学过程 Ⅰ.课题导入 复习:等差数列的定义: an - a n ?1 =d ,(n≥2,n∈N ) 等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的 数列。 课本 P41 页的 4 个例子: ①1,2,4,8,16,? ②1,
?

1 1 1 1 , , , ,? 2 4 8 16
2 3 4

③1,20, 20 , 20 , 20 ,?
2 3 4 ④ 10000 ?1.0198 , 10000 ?1.0198 , 10000 ?1.0198 , 10000 ?1.0198 ,

10000 ?1.01985 ,??
观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:从第二项起,第一项与前一项的比都等于同一个常数。

Ⅱ.讲授新课 1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母 q 表 示(q≠0),即:

an =q(q≠0) a n ?1

1?“从第二项起”与“前一项”之比为常数(q) { an }成等比数列 ?

a n ?1 ? =q( n ? N ,q≠0) an

2? 隐含:任一项 an ? 0且q ? 0 “ an ≠0”是数列{ an }成等比数列的必要非充分条件. 3? q= 1 时,{an}为常数。 2.等比数列的通项公式 1: an ? a1 ? q n?1 (a1 ? q ? 0) 由等比数列的定义,有:

a2 ? a1q ;

a3 ? a2 q ? (a1q)q ? a1q 2 ; a4 ? a3 q ? (a1q 2 )q ? a1q 3 ;
? ? ? ? ? ? ?

an ? an?1q ? a1 ? q n?1 (a1 ? q ? 0)

王新敞
奎屯

新疆

3.等比数列的通项公式 2: an ? am ? q m?1 (a1 ? q ? 0) 4.既是等差又是等比数列的数列:非零常数列 探究:课本 P56 页的探究活动——等比数列与指数函数的关系 等比数列与指数函数的关系: 等比数列 { an } 的通项公式 an ? a1 ? q n?1 (a1 ? q ? 0) ,它的图象是分布在曲线 y ? (q>0)上的一些孤立的点。 当 a1 ? 0 ,q >1 时,等比数列{ an }是递增数列; 当 a1 ? 0 , 0 ? q ? 1 ,等比数列{ an }是递增数列; 当 a1 ? 0 , 0 ? q ? 1 时,等比数列{ an }是递减数列; 当 a1 ? 0 ,q >1 时,等比数列{ an }是递减数列;

a1 x q q

当 q ? 0 时,等比数列{ an }是摆动数列;当 q ? 1 时,等比数列{ an }是常数列。 [范例讲解] 课本 P50 例 1、例 2、P58 例 3 Ⅲ.课堂练习 课本 P52 练习 1、2 [补充练习]

解略。

2.(1) 一个等比数列的第 9 项是

4 1 ,公比是- ,求它的第 1 项(答案: a1 =2916) 9 3

(2) 一个等比数列的第 2 项是 10, 第 3 项是 20, 求它的第 1 项与第 4 项 (答案:a1 =

a2 =5, q

a4 = a3 q=40)
Ⅳ.课时小结 本节学习内容:等比数列的概念和等比数列的通项公式. Ⅴ.课后作业:课本 P53 习题 A 组 1、2 题

(第 8 课时)
课题: §2.4 等比数列 ●教学目标 知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列 的有关性质,并系统了解判断数列是否成等比数列的方法 过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。 情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并 应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 ●教学重点 等比中项的理解与应用 ●教学难点 灵活应用等比数列定义、通项公式、性质解决一些相关问题 ●教学过程 Ⅰ.课题导入 首先回忆一下上一节课所学主要内容: 1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数, 那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母 q 表示(q≠ 0),即:

an =q(q≠0) a n ?1
n?1

2.等比数列的通项公式: an ? a1 ? q 3.{ an }成等比数列 ?

(a1 ? q ? 0) , an ? am ? q n?m (am ? q ? 0)

a n ?1 ? =q( n ? N ,q≠0) “ an ≠0”是数列{ an }成等比 an

数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列 Ⅱ.讲授新课 1.等比中项:如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么称这个数 G 为 a 与 b 的等比中项. 即 G=± ab (a,b 同号) 如 果 在 a 与 b 中 间 插 入 一 个 数 G , 使 a,G , b 成 等 比 数 列 , 则

G b ? ? G 2 ? ab ? G ? ? ab , a G
反之, 若 G =ab,则 ≠0) [范例讲解] 课本 P58 例 4 证明: 设数列 ?an ? 的首项是 a1 , 公比为 q1 ; ?bn ? 的首项为 b1 , 公比为 q2 , 那么数列 ?an ? bn ?的第 n 项与第 n+1 项分别为:
2

G b 2 b ? ,即 a,G,b 成等比数列。∴a,G,b 成等比数列 ? G =ab(a· a G

a1 ? q1
?

n?1

? b1 ? q2 与a1 ? q1 ? b1 ? q2 即为a1b1 (q1q2 ) n?1 与a1b1 (q1q2 ) n
n n

n?1

an?1 ? bn?1 a b (q q ) n ? 1 1 1 2 n?1 ? q1q2 . an ? bn a1b1 (q1q2 )

它是一个与 n 无关的常数,所以 ?an ? bn ?是一个以 q1q2 为公比的等比数列 拓展探究: 对于例 4 中的等比数列{ an }与{ bn },数列{

an }也一定是等比数列吗? bn
an a ,则 cn ?1 ? n ?1 bn bn ?1

探究:设数列{ an }与{ bn }的公比分别为 q1和q2 ,令 cn ?

an ?1 cn ?1 bn ?1 a b a q ? ? ? ( n ?1 ) ( n ?1 ) ? 1 ,所以,数列{ n }也一定是等比数列。 an cn an bn q2 bn bn
课本 P53 的练习 4 已知数列{ an }是等比数列,(1) a5 ? a3a7 是否成立? a5 ? a1a9 成立吗?为什么?
2 2

(2) an ? an?1an?1 (n ? 1) 是否成立?你据此能得到什么结论?
2 2 an ? an?k an?k (n ? k ? 0) 是否成立?你又能得到什么结

论?

结论:2.等比数列的性质:若 m+n=p+k,则 am an ? a p ak 在等比数列中,m+n=p+q, am , an , a p , ak 有什么关系呢? 由定义得: am ? a1q m?1

an ? a1q n?1
2

a p ? a1q p?1

ak ? a1 ? q k ?1

am ? an ? a1 q m?n?2
2

, a p ? ak ? a1 q p ? k ?2 则 am an ? a p ak

Ⅲ.课堂练习 课本 P53 的练习 3、5 Ⅳ.课时小结 1、若 m+n=p+q, am ? an ? a p ? aq 2、若 ?a n ?, ?bn ?是项数相同的等比数列,则 ?an ? bn ?、{ Ⅴ.课后作业 课本 P53 习题 2.4A 组的 3、5 题

an }也是等比数列 bn

(第 9 课时)
课题: §2.5 等比数列的前

n 项和

●教学目标 知识与技能: 掌握等比数列的前 n 项和公式及公式证明思路; 会用等比数列的前 n 项和公式 解决有关等比数列的一些简单问题。 过程与方法:经历等比数列前 n 项和的推导与灵活应用,总结数列的求和方法,并能在具 体的问题情境中发现等比关系建立数学模型、解决求和问题。 情感态度与价值观:在应用数列知识解决问题的过程中,要勇于探索,积极进取,激发学习 数学的热情和刻苦求是的精神。 ●教学重点 等比数列的前 n 项和公式推导 ●教学难点 灵活应用公式解决有关问题 ●教学过程 Ⅰ.课题导入 [创设情境] [提出问题]课本 P62“国王对国际象棋的发明者的奖励” Ⅱ.讲授新课 [分析问题]如果把各格所放的麦粒数看成是一个数列, 我们可以得到一个等比数列, 它的首 项是 1, 公比是 2, 求第一个格子到第 64 个格子各格所放的麦粒数总合就是求这个等比数列 的前 64 项的和。下面我们先来推导等比数列的前 n 项和公式。

1、 等比数列的前 n 项和公式: 当 q ? 1 时, S n ?

a1 (1 ? q n ) ① 1? q

或 Sn ?

a1 ? a n q 1? q



当 q=1 时, S n ? na1 当已知 a1 , q, n 时用公式①;当已知 a1 , q, an 时,用公式②. 公式的推导方法一: 一般地,设等比数列 a1 , a2 ? a3 ,?an ?它的前 n 项和是

S n ? a1 ? a2 ? a3 ? ?an
由?

?S n ? a1 ? a 2 ? a3 ? ? a n
n ?1 ?a n ? a1 q 2 n?2 n ?1 ? ?S n ? a1 ? a1 q ? a1 q ? ? a1 q ? a1 q 2 3 n ?1 n ? ?qSn ? a1 q ? a1 q ? a1 q ? ? a1 q ? a1 q

得?

? (1 ? q)S n ? a1 ? a1q n
∴当 q ? 1 时, S n ?

a1 (1 ? q n ) ① 1? q

或 Sn ?

a1 ? a n q 1? q



当 q=1 时, S n ? na1 公式的推导方法二: 有等比数列的定义,

a a 2 a3 ? ??? n ? q a1 a2 an?1 a 2 ? a3 ? ? ? a n S ? a1 ? n ?q a1 ? a2 ? ? ? an?1 S n ? an

根据等比的性质,有



S n ? a1 ? q ? (1 ? q)S n ? a1 ? an q (结论同上) S n ? an

围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式. 公式的推导方法三:

S n ? a1 ? a2 ? a3 ? ?an = a1 ? q(a1 ? a2 ? a3 ? ?an?1 )
= a1 ? qSn?1 = a1 ? q(S n ? an )

? (1 ? q)S n ? a1 ? an q (结论同上)

[解决问题] 有了等比数列的前 n 项和公式,就可以解决刚才的问题。 由 a1 ? 1, q ? 2, n ? 64 可得

Sn ?

a1 (1 ? q n ) 1? (1 ? 264 ) 64 = = 2 ?1。 1? 2 1? q

264 ? 1 这个数很大,超过了 1.84 ?1019 。国王不能实现他的诺言。
[例题讲解] 课本 P56-57 的例 1、例 2 Ⅲ.课堂练习 课本 P58 的练习 1、2、3 Ⅳ.课时小结 例 3 解略

等 比 数 列 求 和 公 式 : 当 q=1 时 , S n ? na1

当 q ? 1 时 , Sn ?

a1 ? a n q 1? q



a1 (1 ? q n ) Sn ? 1? q
Ⅴ.课后作业 课本 P61 习题 A 组的第 1、2 题

(第 10 课时)
课题: §2.5 等比数列的前 ●教学目标 知识与技能:会用等比数列的通项公式和前 n 项和公式解决有关等比数列的 S n , an , a1 , n, q 中知道三个数求另外两个数的一些简单问题;提高分析、解决问题能力 过程与方法:通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的 思想. 情感态度与价值观:通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事 求是的科学态度. ●教学重点 进一步熟练掌握等比数列的通项公式和前 n 项和公式 ●教学难点 灵活使用公式解决问题 ●教学过程 Ⅰ.课题导入 首先回忆一下前一节课所学主要内容: 等比数列的前 n 项和公式:

n 项和

当 q ? 1 时, S n ?

a1 (1 ? q n ) ① 1? q

或 Sn ?

a1 ? a n q 1? q



当 q=1 时, S n ? na1 当已知 a1 , q, n 时用公式①;当已知 a1 , q, an 时,用公式② Ⅱ.讲授新课 1、等比数列前 n 项,前 2n 项,前 3n 项的和分别是 Sn,S2n,S3n,
2 求证: S2 n ? S2 n ? Sn (S2 n ? S3n )

2、设 a 为常数,求数列 a,2a ,3a ,?,na ,?的前 n 项和; (1)a=0 时,Sn=0 (2)a≠0 时,若 a=1,则 Sn=1+2+3+?+n=
n-1 n

2

3

n

1 n ( n ? 1) 2

若 a≠1,Sn-aSn=a(1+a+?+a -na ),Sn= Ⅲ.课堂练习 课本 P61 习题 A 组的第 4、5 题 Ⅳ.课时小结 Ⅴ.课后作业 课本 P61 习题 A 组的第 6 题

a [1 ? ( n ? 1)a n ? na n ?1 ] 2 (1 ? a )

(第 11--12 课时)
课 教学目的: 1.系统掌握数列的有关概念和公式。 2.了解数列的通项公式 an 与前 n 项和公式 S n 的关系。 3.能通过前 n 项和公式 S n 求出数列的通项公式 an 。 授课类型:复习课 课时安排:2 课时 教学过程: 题:数列复习小结

一、本章知识结构

二、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前 n 项和公式及其推导方法. 三、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合 的思想. 2.等差、等比数列中,a 1 、 an 、n、d(q)、 S n “知三求二”,体现了方程(组)的思 想、整体思想,有时用到换元法. 3.求等比数列的前 n 项和时要考虑公比是否等于 1,公比是字母时要进行讨论,体现 了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累 加法,等价转化等. 四、知识精要:

1、数列

[数列的通项公式] a n ? ?

?a1 ? S1 (n ? 1) ?S n ? S n ?1 (n ? 2)

[数列的前 n 项和] S n ? a1 ? a2 ? a3 ? ? ? an

2、等差数列 [等差数列的概念] [定义]如果一个数列从第 2 项起, 每一项与它的前一项的差等于同一个常数, 那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示。 [等差数列的判定方法] 1. 定义法:对于数列 ?an ? ,若 an?1 ? an ? d (常数),则数列 ?an ? 是等差数列。 2.等差中项:对于数列 ?an ? ,若 2an?1 ? an ? an?2 ,则数列 ?an ? 是等差数列。 [等差数列的通项公式] 如果等差数列 ?an ? 的首项是 a1 ,公差是 d ,则等差数列的通项为 an ? a1 ? (n ? 1)d 。 [说明]该公式整理后是关于 n 的一次函数。 [等差数列的前 n 项和] 1. S n ?
n(a1 ? a n ) 2

2.

S n ? na1 ?

n(n ? 1) d 2

[说明]对于公式 2 整理后是关于 n 的没有常数项的二次函数。 [等差中项] 如果 a , A , b 成等差数列,那么 A 叫做 a 与 b 的等差中项。即: A ?
a?b 或 2A ? a ? b 2

[说明]:在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前 一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 [等差数列的性质] 1.等差数列任意两项间的关系:如果 an 是等差数列的第 n 项, a m 是等差数列的第 m 项, 且 m ? n ,公差为 d ,则有 an ? am ? (n ? m)d 2. 对于等差数列 ?an ? ,若 n ? m ? p ? q ,则 an ? am ? a p ? aq 。
a1 ? an ????? ????? ? a , a , a , ? , a , a , 2? 3 n?2 n ?1 a n ? ?? ,如图所示: 1 ? ? ? ?? ?? ? a2 ? an ?1

也就是: a1 ? a n ? a 2 ? a n?1 ? a3 ? a n?2

3.若数列 ?an ? 是等差数列,S n 是其前 n 项的和,k ? N ,那么 S k ,S 2 k ? S k , S 3k ? S 2 k
*

成等差数列。如下图所示:
S 3k ??????????? ? ??????????? ? ? a1 ? a2 ? a3 ? ? ? ak ? ak ?1 ? ? ? a2k ? a2k ?1 ? ? ? a3k ???? ???? ? ?? ? ??? ? ??? ??? ? Sk S 2k ? S k S 3k ? S 2 k

3、等比数列 [等比数列的概念] [定义]如果一个数列从第 2 项起, 每一项与它的前一项的比等于同一个常数, 那么这个数列 就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母 q 表示( q ? 0 )。 [等比中项] 如果在 a 与 b 之间插入一个数 G ,使 a , G , b 成等比数列,那么 G 叫做 a 与 b 的等比中 项。 也就是,如果是的等比中项,那么 [等比数列的判定方法] 1. 定义法:对于数列 ?an ? ,若
a n ?1 ? q ( q ? 0) ,则数列 an

G b 2 ? ,即 G ? ab 。 a G

?an ? 是等比数列。

2 2.等比中项:对于数列 ?an ? ,若 an an?2 ? an an ? 是等比数列。 ?1 ,则数列 ?

[等比数列的通项公式] 如果等比数列 ?an ? 的首项是 a1 ,公比是 q ,则等比数列的通项为 an ? a1q n?1 。 [等比数列的前 n 项和] 1 Sn ? ○
a1 (1 ? q n ) (q ? 1) 1? q

2 Sn ? ○

a1 ? a n q (q ? 1) 1? q

3 当 q ? 1 时, S n ? na1 ○

[等比数列的性质] 1.等比数列任意两项间的关系:如果 an 是等比数列的第 n 项, a m 是等差数列的第 m 项, 且 m ? n ,公比为 q ,则有 a n ? a m q n?m 3. 对于等比数列 ?an ? ,若 n ? m ? u ? v ,则 an ? am ? au ? av
a1?an ????? ?????? a , a , a , ? , a n?2 , a n?1 , a n 2 ?3 ? ?? 。如图所示: 1 ? ? ? ?? ?? ? a2 ?an ?1

也就是: a1 ? a n ? a 2 ? a n?1 ? a3 ? a n?2

4.若数列 ?a n ?是等比数列, S n 是其前 n 项的和, k ? N * ,那么 S k , S 2 k ? S k , S 3k ? S 2k 成 等比数列。如下图所示:
S 3k ??????????? ? ??????????? ? ? a1 ? a2 ? a3 ? ? ? ak ? ak ?1 ? ? ? a2k ? a2k ?1 ? ? ? a3k ???? ???? ? ?? ? ??? ? ??? ??? ? Sk S 2k ? S k S 3k ? S 2 k

4、数列前 n 项和 (1)重要公式:

1 ? 2 ? 3 ? ?n ?

n(n ? 1) ; 2
n(n ? 1)( 2n ? 1) ; 6

12 ? 2 2 ? 3 2 ? ? n 2 ?

1 13 ? 2 3 ? ? n 3 ? [ n(n ? 1)] 2 2

王新敞
奎屯

新疆

(2)等差数列中, S m?n ? S m ? S n ? mnd (3)等比数列中, S m?n ? S n ? q n S m ? S m ? q m S n (4)裂项求和:

1 1 1 ? ? ;( n ? n!? (n ? 1)!?n! ) n(n ? 1) n n ? 1

(第 1 课时)
课题

§3.1 不等式与不等关系

【教学目标】 1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理 解不等式(组)的实际背景,掌握不等式的基本性质; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的 方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。 【教学重点】 用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理 解不等式(组)对于刻画不等关系的意义和价值。 【教学难点】 用不等式(组)正确表示出不等关系。 【教学过程】

1.课题导入
在现实世界和日常生活中, 既有相等关系, 又存在着大量的不等关系。 如两点之间线段最短, 三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与 小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不 等式来表示不等关系。 下面我们首先来看如何利用不等式来表示不等关系。

2.讲授新课
1)用不等式表示不等关系 引例 1: 限速 40km/h 的路标, 指示司机在前方路段行驶时, 应使汽车的速度 v 不超过 40km/h, 写成不等式就是:

v ? 40
引例 2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于 2.5%,蛋白质的含量 p 应不少于 2.3%,写成不等式组就是——用不等式组来表示

? f ? 2.5% ? ? p ? 2.3%
问题 1:设点 A 与平面 ? 的距离为 d,B 为平面 ? 上的任意一点,则 d ?| AB | 。 问题 2:某种杂志原以每本 2.5 元的价格销售,可以售出 8 万本。据市场调查,若单价每提 高 0.1 元,销售量就可能相应减少 2000 本。若把提价后杂志的定价设为 x 元,怎样用不等 式表示销售的总收入仍不低于 20 万元呢? 解:设杂志社的定价为 x 元,则销售的总收入为 (8 ? “销售的总收入仍不低于 20 万元”可以表示为不等式

x ? 2.5 ? 0.2) x 万元,那么不等关系 0.1

(8 ?

x ? 2.5 ? 0.2) x ? 20 0.1

问题 3:某钢铁厂要把长度为 4000mm 的钢管截成 500mm 和 600mm 两种。按照生产的要求, 600mm 的数量不能超过 500mm 钢管的 3 倍。怎样写出满足所有上述不等关系的不等式呢?

解:假设截得 500 mm 的钢管 x 根,截得 600mm 的钢管 y 根。根据题意,应有如下的不等关 系: (1)截得两种钢管的总长度不超过 4000mm ; (2)截得 600mm 钢管的数量不能超过 500mm 钢管数量的 3 倍; (3)截得两种钢管的数量都不能为负。 要同时满足上述的三个不等关系,可以用下面的不等式组来表示:

?500 x ? 600 y ? 4000; ? 3x ? y; ? ? x ? 0; ? ? y ? 0. ?
3.随堂练习
1、试举几个现实生活中与不等式有关的例子。

2、课本 P74 的练习 1、2

4.课时小结
用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。

5.作业
课本 P75 习题 3.1[A 组]第 4、5 题

(第 2 课时)
课题: §3.1 不等式与不等关系 【教学目标】 1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的 方法; 3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力. 【教学重点】 掌握不等式的性质和利用不等式的性质证明简单的不等式; 【教学难点】 利用不等式的性质证明简单的不等式。

【教学过程】

1.课题导入
在初中,我们已经学习过不等式的一些基本性质。 请同学们回忆初中不等式的的基本性质。 (1)不等式的两边同时加上或减去同一个数,不等号的方向不改变; 即若 a ? b ? a ? c ? b ? c (2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变; 即若 a ? b, c ? 0 ? ac ? bc (3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。 即若 a ? b, c ? 0 ? ac ? bc

2.讲授新课
1、不等式的基本性质: 师:同学们能证明以上的不等式的基本性质吗? 证明:

1)∵(a+c)-(b+c) =a-b>0, ∴a+c>b+c
2)

(a ? c) ? (b ? c) ? a ? b ? 0 , ∴a?c ? b?c.

实际上,我们还有 a ? b, b ? c ? a ? c ,(证明:∵a>b,b>c,

∴a-b>0,b-c>0. 根据两个正数的和仍是正数,得 (a-b)+(b-c)>0, 即 a-c>0, ∴a>c. 于是,我们就得到了不等式的基本性质: (1) a ? b, b ? c ? a ? c (2) a ? b ? a ? c ? b ? c (3) a ? b, c ? 0 ? ac ? bc

(4) a ? b, c ? 0 ? ac ? bc 2、探索研究 思考,利用上述不等式的性质,证明不等式的下列性质: (1) a ? b, c ? d ? a ? c ? b ? d ; (2) a ? b ? 0, c ? d ? 0 ? ac ? bd ; (3) a ? b ? 0, n ? N , n ? 1 ? an ? bn ; n a ? n b 。 证明: 1)∵a>b, ∴a+c>b+ c. ∵c>d, ∴b+c>b+ d. 由①、②得 a+c>b+d. ② ①

2)

a ? b, c ? 0 ? ac ? bc ? ? ? ac ? bd c ? d , b ? 0 ? bc ? bd ?
n

3)反证法)假设 n a ? n b ,

则:若 n

a ? a ?

n n

b ?a?b b ?a?b

这都与 a ? b 矛盾,

∴n a ? n b.
[范例讲解]: 例 1、已知 a ? b ? 0, c ? 0, 求证

c c ? 。 a b 1 ?0。 证明:以为 a ? b ? 0 ,所以 ab>0, ab 1 1 1 1 a? ? b? 于是 ,即 ? ab ab b a c c 由 c<0 ,得 ? a b
3.随堂练习 1
1、课本 P74 的练习 3

2、在以下各题的横线处适当的不等号: (1)( 3 + 2 )2 (2)( 3 - 2 )2 (3) 6+2 6 ; ( 6 -1)2;

1 5?2
2

1 ; 6? 5
log 1 b
2

(4)当 a>b>0 时,log 1 a 答案:(1)< (2)<

(3)<

(4)<

[补充例题] 例 2、比较(a+3)(a-5)与(a+2)(a-4)的大小。 分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开, 合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关 紧要)。根据实数运算的符号法则来得出两个代数式的大小。比较两个实数大小的问题转化 为实数运算符号问题。 解:由题意可知: (a+3)(a-5)-(a+2)(a-4) =(a2-2a-15)-(a2-2a-8) =-7<0 ∴(a+3)(a-5)<(a+2)(a-4)

随堂练习 2
4、 比较大小: 2 (1)(x+5)(x+7)与(x+6) (2) x ? 5x ? 6与2 x ? 5x ? 9
2 2

4.课时小结
本节课学习了不等式的性质, 并用不等式的性质证明了一些简单的不等式, 还研究了如何比 较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为: 第一步:作差并化简,其目标应是 n 个因式之积或完全平方式或常数的形式; 第二步:判断差值与零的大小关系,必要时须进行讨论; 第三步:得出结论

5. 作业
课本 P75 习题 3.1[A 组]第 2、3 题;[B 组]第 1 题

(第 3 课时)
课题: §3.2 一元二次不等式及其解法 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一 元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力

和逻辑思维能力; 2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究 一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事 物之间普遍联系的辩证思想。 【教学重点】 从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 【教学难点】 理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】

1.课题导入
从实际情境中抽象出一元二次不等式模型: 教材 P76 互联网的收费问题 教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:

x 2 ? 5 x ? 0 …………………………(1)
2.讲授新课 1)一元二次不等式的定义
象 x ? 5 x ? 0 这样,只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元
2

二次不等式

2)探究一元二次不等式 x 2 ? 5 x ? 0 的解集
怎样求不等式(1)的解集呢? 探究: (1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根: x1 ? 0, x2 ? 5 二次函数有两个零点: x1 ? 0, x2 ? 5 于是,我们得到:二次方程的根就是二次函数的零点。 (2)观察图象,获得解集 画出二次函数 y ? x ? 5x 的图象,如图,观察函数图象,可知:
2

当 x<0,或 x>5 时,函数图象位于 x 轴上方,此时,y>0,即 x ? 5 x ? 0 ;
2

当 0<x<5 时,函数图象位于 x 轴下方,此时,y<0,即 x ? 5 x ? 0 ;
2

所以,不等式 x ? 5 x ? 0 的解集是 ?x | 0 ? x ? 5? ,从而解决了本节开始时提出的问题。
2

3)探究一般的一元二次不等式的解法
任 意 的 一 元 二 次 不 等 式 , 总 可 以 化 为 以 下 两 种 形 式 :

ax2 ? bx ? c ? 0,(a ? 0)或ax2 ? bx ? c ? 0,(a ? 0)

一般地,怎样确定一元二次不等式 ax ? bx ? c >0 与 ax ? bx ? c <0 的解集呢?
2 2

组织讨论: 从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑 以下两点:
2 2 (1)抛物线 y ? ax ? bx ? c 与 x 轴的相关位置的情况, 也就是一元二次方程 ax ? bx ? c =0

的根的情况
2 (2)抛物线 y ? ax ? bx ? c 的开口方向,也就是 a 的符号

总结讨论结果:
2 (l)抛物线 y ? ax ? bx ? c (a> 0)与 x 轴的相关位置,分为三种情况,这可以由一

元二次方程 ax ? bx ? c =0 的判别式 ? ? b ? 4ac 三种取值情况(Δ> 0,Δ=0,Δ<0)来确
2 2

定.因此,要分二种情况讨论 (2)a<0 可以转化为 a>0 分 Δ>O,Δ=0,Δ<0 三种情况,得到一元二次不等式 ax ? bx ? c >0 与 ax ? bx ? c <0 的解
2 2

集 一元二次不等式 ax2 ? bx ? c ? 0或ax2 ? bx ? c ? 0?a ? 0? 的解集: 设相应的一元二次方程 ax2 ? bx ? c ? 0?a ? 0? 的两根为 x1、x2 且 x1 ? x2 ,? ? b ? 4ac ,
2

则不等式的解的各种情况如下表:(让学生独立完成课本第 77 页的表格)

??0

??0

??0

y ? ax2 ? bx ? c

y ? ax2 ? bx ? c

y ? ax2 ? bx ? c

二次函数
y ? ax2 ? bx ? c

(a ? 0) 的图象

一元二次方程

有两相异实根
x1 , x2 ( x1 ? x2 )

有两相等实根
x1 ? x 2 ? ? b 2a

?a ? 0?的根

ax2 ? bx ? c ? 0

无实根

ax2 ? bx ? c ? 0 (a ? 0)的解集 ax2 ? bx ? c ? 0 (a ? 0)的解集
[范例讲解] 例2

?x x ? x 或x ? x ?
1 2

? b? ?x x ? ? ? 2a ? ?

R

?x x

1

? x ?x 2 ?

? ?

(课本第 78 页)求不等式 4 x ? 4 x ? 1 ? 0 的解集.
2
2

解:因为 ? ? 0 , 方程 4 x ? 4 x ? 1 ? 0 的解是 x1 ? x2 ? 所以,原不等式的解集是 ? x x ?

1 . 2

? ?

1? ? 2?

例 3 (课本第 78 页)解不等式 ? x 2 ? 2x ? 3 ? 0 .
解:整理,得 x ? 2 x ? 3 ? 0 .
2

因为 ? ? 0 , 方程 x 2 ? 2x ? 3 ? 0 无实数解, 所以不等式 x
2

? 2x ? 3 ? 0 的解集是 ? .

从而,原不等式的解集是 ? .

3.随堂练习
课本第 80 的练习 1(1)、(3)、(5)、(7)

4.课时小结
解一元二次不等式的步骤: ① 将二次项系数化为“+”:A= ax ? bx ? c >0(或<0)(a>0)
2

② 计算判别式 ? ,分析不等式的解的情况: ⅰ. ? >0 时,求根 x1 < x2 , ?

?若A ? 0,则x ? x1或 ? x2; ?若A ? 0,则x1 ? x ? x2 .

?若A ? 0,则x ? x0的一切实数; ? ⅱ. ? =0 时,求根 x1 = x2 = x0 , ?若A ? 0,则x ? ?; ?若A ? 0,则x ? x . 0 ?
ⅲ. ? <0 时,方程无解, ? ③ 写出解集.

?若A ? 0,则x ? R; ?若A ? 0,则x ??.

5.评价设计
课本第 80 页习题 3.2[A]组第 1 题

(第 4 课时)
课题: §3.2 一元二次不等式及其解法 【教学目标】 1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一 元二次不等式的解法; 2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能 力; 3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从 不同侧面观察同一事物思想 【教学重点】 熟练掌握一元二次不等式的解法 【教学难点】 理解一元二次不等式与一元二次方程、二次函数的关系 【教学过程】

1.课题导入
1.一元二次方程、一元二次不等式与二次函数的关系 2.一元二次不等式的解法步骤——课本第 86 页的表格

2.讲授新课
[范例讲解] 例 1 某种牌号的汽车在水泥路面上的刹车距离 s m 和汽车的速度 x km/h 有如下的关系:

s?

1 1 2 x? x 20 180

在一次交通事故中,测得这种车的刹车距离大于 39.5m,那么这辆汽车刹车前的速度是多 少?(精确到 0.01km/h) 解:设这辆汽车刹车前的速度至少为 x km/h,根据题意,我们得到 移项整理得: x ? 9 x ? 7110 ? 0
2

1 1 2 x? x ? 39.5 20 180

显然

? 0 ,方程 x2 ? 9 x ? 7110 ? 0 有两个实数根,即

x1 ? ?88.94, x2 ? 79.94 。所以不等式的解集为 ?x | x ? ?88.94, 或x ? 79.94?
在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为 79.94km/h. 例 4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量 x (辆)与创造的价值 y(元)之间有如下的关系:

y ? ?2x2 ? 220x
若这家工厂希望在一个星期内利用这条流水线创收 6000 元以上,那么它在一个星期内大约 应该生产多少辆摩托车? 解:设在一个星期内大约应该生产 x 辆摩托车,根据题意,我们得到

?2 x2 ? 220 x ? 6000
移项整理,得

x2 ? 110 x ? 3000 ? 0
2 因为 ? 100 ? 0 ,所以方程 x ? 110 x ? 3000 ? 0 有两个实数根

x1 ? 50, x2 ? 60
由二次函数的图象,得不等式的解为:50<x<60 因为 x 只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在 51—59 辆之间时,这家工厂能够获得 6000 元以上的收益。

3.随堂练习 1
课本第 80 页练习 2 [补充例题] (2) 应用一(一元二次不等式与一元二次方程的关系)
2 例:设不等式 ax ? bx ? 1 ? 0 的解集为 {x | ?1 ? x ? 1 ,求 a b ? 3}

(3)

应用二(一元二次不等式与二次函数的关系)

2 2 例:设 A ? {x | x ? 4 x ? 3 ? 0}, B ? {x | x ? 2 x ? a ? 8 ? 0} ,且 A ? B ,求 a 的取值

范围. 改:设 x ? 2 x ? a ? 8 ? 0 对于一切 x ? (1,3) 都成立,求 a 的范围.
2

改:若方程 x ? 2 x ? a ? 8 ? 0 有两个实根 x1 , x2 ,且 x1 ? 3 , x2 ? 1 ,求 a 的范围.
2

随堂练习 2
1 1 、 已 知 二 次 不 等 式 ax ? bx ? c ? 0 的 解 集 为 {x | x ? 1 ,求关于 x 的不等式 3 或x ? 2}
2

cx2 ? bx? a ?0 的解集.
2、若关于 m 的不等式 mx ? (2m ? 1) x ? m ? 1 ? 0 的解集为空集,求 m 的取值范围.
2

改 1:解集非空 改 2:解集为一切实数

4.课时小结
进一步熟练掌握一元二次不等式的解法 一元二次不等式与一元二次方程以及一元二次函数的关系

5. 作业

课本第 80 页的习题 3.2[A]组第 3、5 题

(第 5 课时)
课题: §3.3.1 二元一次不等式(组)与平面区域 【教学目标】 1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域; 2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力; 3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。 【教学重点】 用二元一次不等式(组)表示平面区域; 【教学难点】 【教学过程】

1.课题导入
1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第 82 页的“银行信贷资金分配问题” 教师引导学生思考、探究,让学生经历建立线性规划模型的过程。 在获得探究体验的基础上,通过交流形成共识:

2.讲授新课
1.建立二元一次不等式模型 把实际问题

转化 数学问题:

设用于企业贷款的资金为 x 元,用于个人贷款的资金为 y 元。 (把文字语言

转化 符号语言)
(1)

(资金总数为 25 000 000 元) ? x ? y ? 25000000

( 预 计 企 业 贷 款 创 收 12% , 个 人 贷 款 创 收 10% , 共 创 收 30 000 元 以 上 )

?% ) y ?(12%)x+(10
(2)

30 012 0x 0 ? 10 y ? 3000000 即

(用于企业和个人贷款的资金数额都不能是负值) ? x ? 0, y ? 0

(3)

将(1)(2)(3)合在一起,得到分配资金应满足的条件:

? x ? y ? 25000000 ? ?12 x ? 10 y ? 3000000 ? x ? 0, y ? 0 ?
2.二元一次不等式和二元一次不等式组的定义 (1)二元一次不等式:含有两个未知数,并且未知数的最高次数是 1 的不等式叫做二元一 次不等式。 (2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。 (3)二元一次不等式(组)的解集:满足二元一次不等式(组)的 x 和 y 的取值构成有序 实数对(x,y),所有这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解 集。 (4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系: 二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序 实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是 直角坐标系内的点构成的集合。 3.探究二元一次不等式(组)的解集表示的图形 (1)回忆、思考 回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间 思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形? (2)探究 从特殊到一般: 先研究具体的二元一次不等式 x-y<6 的解集所表示的图形。 如图:在平面直角坐标系内,x-y=6 表示一条直线。平面内所有的点被直线分成三类: 第一类:在直线 x-y=6 上的点; 第二类:在直线 x-y=6 左上方的区域内的点; 第三类:在直线 x-y=6 右下方的区域内的点。 设点是直线 x-y=6 上的点,选取点,使它的坐标满足不等式 x-y<6,请同学们完成课本 第 83 页的表格, 横坐标 x 点 P 的纵坐标 y1 点 A 的纵坐标 y2 并思考: 当点 A 与点 P 有相同的横坐标时,它们的纵坐标有什么关系? 根据此说说, 直线 x-y=6 左上方的坐标与不等式 x-y<6 有什么关系? 直线 x-y=6 右下方点的坐标呢? 学生思考、讨论、交流,达成共识: 在平面直角坐标系中,以二元一次不等式 x-y<6 的解为坐标的点都在直线 x-y=6 的左上方;反过来,直线 x-y=6 左上方的点的坐标都满足不等式 x-y<6。 因此,在平面直角坐标系中,不等式 x-y<6 表示直线 x-y=6 左上方的平面区域;如图。 类似的:二元一次不等式 x-y>6 表示直线 x-y=6 右下方的区域;如图。 直线叫做这两个区域的边界 -3 -2 -1 0 1 2 3

由特殊例子推广到一般情况: (3)结论: 二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组 成的平面区域.(虚线表示区域不包括边界直线) 4.二元一次不等式表示哪个平面区域的判断方法 由于对在直线 Ax+By+C=0 同一侧的所有点( x , y ),把它的坐标( x , y )代入 Ax+By+C, 所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点( x0,y0),从 Ax0+By0+C 的正负即可判断 Ax+By+C>0 表示直线哪一侧的平面区域.(特殊地,当 C≠0 时,常把原点 作为此特殊点)
【应用举例】

例 1 画出不等式 x ? 4 y ? 4 表示的平面区域。 解:先画直线 x ? 4 y ? 4 (画成虚线). 取原点(0,0),代入 x +4y-4,∵0+4×0-4=-4<0, ∴原点在 x ? 4 y ? 4 表示的平面区域内,不等式 x ? 4 y ? 4 表示的区域如图: 归纳: 画二元一次不等式表示的平面区域常采用 “直线定界, 特殊点定域” 的方法。特殊地, 当 C ? 0 时,常把原点作为此特殊点。 变式 1、画出不等式 4 x ? 3 y ? 12 所表示的平面区域。 变式 2、画出不等式 x ? 1 所表示的平面区域。

例 2 用平面区域表示.不等式组 ?

? y ? ?3x ? 12 的解集。 ?x ? 2 y

分析: 不等式组表示的平面区域是各个不等式所表示的平面点集的交集, 因而是各个不 等式所表示的平面区域的公共部分。 解 : 不 等 式 y ? ?3x ? 12表 示 直线 y ? ?3x ? 12 右 下 方 的 区 域, x ? 2 y 表 示 直 线

x ? 2 y 右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。
归纳: 不等式组表示的平面区域是各个不等式所表示的平面点集的交集, 因而是各个不等式 所表示的平面区域的公共部分。

? 0 表示的平面区域。 变式 1、画出不等式 ( x ? 2 y ? 1)(x ? y ? 4)
变式 2、由直线 x ? y ? 2 ? 0 , x ? 2 y ? 1 ? 0 和 2 x ? y ? 1 ? 0 围成的三角形区域(包括边 界)用不等式可表示为 。

3.随堂练习
1、课本第 86 页的练习 1、2、3

4.课时小结
1.二元一次不等式表示的平面区域.

2.二元一次不等式表示哪个平面区域的判断方法. 3.二元一次不等式组表示的平面区域.

5. 作业
课本第 93 页习题 3.3[A]组的第 1 题

(第 6 课时)
课题: §3.3.1 二元一次不等式(组)与平面区域 【教学目标】 1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际 问题中的已知条件,找出约束条件; 2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数 学思想; 3.情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生 创新。 【教学重点】 理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来; 【教学难点】 把实际问题抽象化,用二元一次不等式(组)表示平面区域。 【教学过程】

1.课题导入
[复习引入] 二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组 成的平面区域.(虚线表示区域不包括边界直线) 判断方法:由于对在直线 Ax+By+C=0 同一侧的所有点 (x,y),把它的坐标(x,y)代入 Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点( x0,y0),从 Ax0+By0+C 的正负即可判断 Ax+By+C>0 表示直线哪一侧的平面区域.(特殊地,当 C≠0 时, 常把原点作为此特殊点)。

随堂练习 1
1、画出不等式 2 x +y-6<0 表示的平面区域.

?x ? y ? 5 ? 0 ? 2、画出不等式组 ? x ? y ? 0 表示的平面区域。 ?x ? 3 ?
2.讲授新课

y x+y=0 5 5 B(- , ) 2 2 x-y+5=0 6 x=3 0 3 C(3,-3) x A(3,8)

【应用举例】

例 3 某人准备投资 1 200 万兴办一所完全中学,对教育市场进行调查后,他得到了下面的 数据表格(以班级为单位): 学段 初中 高中 班级学生人数 45 40 配备教师数 2 3 硬件建设/万元 26/班 54/班 教师年薪/万元 2/人 2/人

分别用数学关系式和图形表示上述的限制条件。 解:设开设初中班 x 个,开设高中班 y 个,根据题意,总共招生班数应限制在 20-30 之间, 所以有 20 ? x ? y ? 30 考虑到所投资金的限制,得到 26 x ? 54 y ? 2 ? 2 x ? 2 ? 3 y ? 1200 即

x ? 2 y ? 40

另外,开设的班数不能为负,则 x ? 0, y ? 0 把上面的四个不等式合在一起,得到:

?20 ? x ? y ? 30 ? x ? 2 y ? 40 ? ? x?0 ? ? y?0 ?
用图形表示这个限制条件,得到如图的平面区域(阴影部分) 例 4 一个化肥厂生产甲、乙两种混合肥料,生产 1 车皮甲种肥料的主要原料是磷酸盐 18t; 生产 1 车皮乙种肥料需要的主要原料是磷酸盐 1t,硝酸盐 15t,现库存磷酸盐 10t、硝酸盐 66t,在此基础上生产两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面 区域。 解:设 x,y 分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:

? 4 x ? y ? 10 ?18 x ? 15 y ? 66 ? ? x?0 ? ? y?0 ?
在直角坐标系中可表示成如图的平面区域(阴影部分)。 [补充例题] 例 1、画出下列不等式表示的区域 (1) ( x ? y)(x ? y ? 1) ? 0 ; (2) x ? y ? 2x 分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由 x ? 2 x ,得 x ? 0 ,又 用 ? y 代 y ,不等式仍成立,区域关于 x 轴对称。 解:(1) ?

?x ? y ? 0 ?x ? y ? 0 矛盾无解,故点 ( x, y ) 在一带形区域内 ? 0 ? x ? y ? 1或 ? ?x ? y ? 1 ? 0 ?x ? y ? 1

(含边界)。 (2) 由 x ? 2 x , 得 x ? 0; 当 y ? 0 时, 有? 当 y ? 0 ,由对称性得出。 指出:把非规范形式等价转化为规范不等式组形式便于求解

?x ? y ? 0 点 ( x, y ) 在一条形区域内(边界); ?2 x ? y ? 0

?2 x ? y ? 3 ? 0 ? 例 2、利用区域求不等式组 ?2 x ? 3 y ? 6 ? 0 的整数解 ?3 x ? 5 y ? 15 ? 0 ?
分 析 : 不 等 式 组 的 实 数 解 集 为 三 条 直 线 l1 : 2 x ? y ? 3 ? 0 , l 2 : 2 x ? 3 y ? 6 ? 0 ,

l3 : 3x ? 5 y ? 15 ? 0 所围成的三角形区域内部(不含边界)。设 l1 ? l 2 ? A , l1 ? l3 ? B ,
再代回原不等式组转化为 y l 2 ? l3 ? C ,求得区域内点横坐标范围,取出 x 的所有整数值, 的一元不等式组得出相应的 y 的整数值。 解 : 设 l1 : 2 x ? y ? 3 ? 0 , l 2 : 2 x ? 3 y ? 6 ? 0 , l3 : 3x ? 5 y ? 15 ? 0 , l1 ? l 2 ? A ,

l1 ? l3 ? B , l 2 ? l3 ? C ,∴ A(

15 3 75 12 , ) , B(0,?3) , C ( ,? ) 。于是看出区域内点的 8 4 19 19

? ? y ? ?1 ? 75 4 ? 横坐标在 (0, ) 内,取 x = 1 , 2 , 3 ,当 x = 1 时,代入原不等式组有 ? y ? ? 19 3 ? 12 ? y?? ? 5 ?
? 12 ? y ? ?1 ,得 y =- 2,∴区域内有整点(1,-2)。同理可求得另外三个整点 (2,0), 5

(2,-1),(3,-1)。 指出: 求不等式的整数解即求区域内的整点是教学中的难点, 它为线性规划中求最优整数解 作铺垫。常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的, 先确定区域内点的横坐标的范围,确定 x 的所有整数值,再代回原不等式组,得出 y 的一元

一次不等式组,再确定 y 的所有整数值,即先固定 x ,再用 x 制约 y 。

3.随堂练习 2
1.(1) y ? x ? 1 ; (2). x ? y ; (3). x ? y

?x ? y ? 6 ? 0 ?x ? y ? 0 ? 2.画出不等式组 ? 表示的平面区域 ?y ? 3 ? ?x ? 5
3.课本第 86 页的练习 4

4.课时小结
进一步熟悉用不等式(组)的解集表示的平面区域。

5. 作业
1、课本第 93 页习题 3.3[B]组的第 1、2 题

(第 7 课时)
课题: §3.3.2 简单的线性规划 【教学目标】 1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束 条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能 应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学 思想,提高学生“建模”和解决实际问题的能力。 【教学重点】 用图解法解决简单的线性规划问题 【教学难点】 准确求得线性规划问题的最优解 【教学过程】

1.课题导入
[复习提问] 1、二元一次不等式 Ax ? By ? C ? 0 在平面直角坐标系中表示什么图形? 2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项? 3、熟记“直线定界、特殊点定域”方法的内涵。

2.讲授新课

在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题: 引例:某工厂有 A、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用 4 个 A 配件耗 时 1h,每生产一件乙产品使用 4 个 B 配件耗时 2h,该厂每天最多可从配件厂获得 16 个 A 配 件和 12 个 B 配件,按每天 8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件: 设甲、乙两种产品分别生产 x、y 件,又已知条件可得二元一次不等式组:

?x ? 2 y ? 8 ? 4 x ? 16 ? ? ? 4 y ? 12 ? x?0 ? ? ? y?0

……………………………………………………………….(1)

(2)画出不等式组所表示的平面区域: 如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。 (3)提出新问题: 进一步,若生产一件甲产品获利 2 万元,生产一件乙产品获利 3 万元,采用哪种生产安排利 润最大? (4)尝试解答: 设生产甲产品 x 件,乙产品 y 件时,工厂获得的利润为 z,则 z=2x+3y.这样,上述问题就转 化为: 当 x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少? 把 z=2x+3y 变形为 y ? ?

2 z 2 z x ? ,这是斜率为 ? ,在 y 轴上的截距为 的直线。当 z 3 3 3 3

变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给

2 8 z x ? ),这说明,截距 可 3 3 3 2 z 以由平面内的一个点的坐标唯一确定。可以看到,直线 y ? ? x ? 与不等式组(1)的区 3 3 z 域的交点满足不等式组(1),而且当截距 最大时,z 取得最大值。因此,问题可以转 3 2 z 化为当直线 y ? ? x ? 与不等式组(1)确定的平面区域有公共点时,在区域内找一个 3 3 z 点 P,使直线经过点 P 时截距 最大。 3
定一个点,(例如(1,2)),就能确定一条直线( y ? ? (5)获得结果: 由上图可以看出,当实现 y ? ? 时,截距

2 z x ? 金国直线 x=4 与直线 x+2y-8=0 的交点 M(4,2) 3 3

z 14 的值最大,最大值为 ,这时 2x+3y=14.所以,每天生产甲产品 4 件,乙产品 3 3

2 件时,工厂可获得最大利润 14 万元。 2、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量 x、y 的约束条件,这组约束条 件都是关于 x、y 的一次不等式,故又称线性约束条件.

②线性目标函数: 关于 x、y 的一次式 z=2x+y 是欲达到最大值或最小值所涉及的变量 x、y 的解析式,叫 线性目标函数. ③线性规划问题: 一般地, 求线性目标函数在线性约束条件下的最大值或最小值的问题, 统称为线性规划 问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x,y)叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 3、 变换条件,加深理解 探究:课本第 88 页的探究活动 (3) 在上述问题中,如果生产一件甲产品获利 3 万元,每生产一件乙产品获利 2 万元, 有应当如何安排生产才能获得最大利润?在换几组数据试试。 (4) 有上述过程,你能得出最优解与可行域之间的关系吗?

3.随堂练习
1.请同学们结合课本 P91 练习 1 来掌握图解法解决简单的线性规划问题.
y

? y ? x, ? (1)求 z=2x+y 的最大值,使式中的 x、y 满足约束条件 ? x ? y ? 1, ? y ? ?1. ?
解:不等式组表示的平面区域如图所示: 当 x=0,y=0 时,z=2x+y=0 点(0,0)在直线 l 0 :2x+y=0 上. 作一组与直线 l 0 平行的直线

3 2 1 O x-y=0 1 1 B( , ) 2 2 x 1 2 -2 -1 A(2,-1) C (-1,-1) -1 x+y-1=0 2x+y=0

l :2x+y=t,t∈R.
可知,在经过不等式组所表示的公共区域内的点且平行于 l 的直线 中,以经过点 A(2,-1)的直线所对应的 t 最大. 所以 zmax=2×2-1=3. (2)求 z=3x+5y 的最大值和最小值,使式中的 x、y 满足约束条件
y

?5 x ? 3 y ? 15, ? ? y ? x ? 1, ? x ? 5 y ? 3. ?
解:不等式组所表示的平面区域如图所示: 从图示可知,直线 3x+5y=t 在经过不等式组所表示的公共区域内的 点时,以经过点(-2,-1)的直线所对应的 t 最小,以经过点( 最大. 所以 zmin=3×(-2)+5×(-1)=-11.

x-y+1=0 9 17 3x+5y=0 ( , ) A 8 8 x-5y-3=0 1 C -1 O x 3 -1 B 5x+3y-15=0

5

9 17 , )的直线所对应的 t 8 8

zmax=3×

9 17 +5× =14 8 8

4.课时小结
用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解

5. 作业
课本第 93 页习题[A]组的第 2 题.

(第 8 课时)
课题: §3.3.2 简单的线性规划 【教学目标】 1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理 论与实际相结合的科学态度和科学道德。 【教学重点】 利用图解法求得线性规划问题的最优解; 【教学难点】 把实际问题转化成线性规划问题, 并给出解答, 解决难点的关键是根据实际问题中的已知条 件,找出约束条件和目标函数,利用图解法求得最优解。 【教学过程】

1.课题导入
[复习引入]: 1、 二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有

点组成的平面区域(虚线表示区域不包括边界直线) 2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:

2.讲授新课
线性规划在实际中的应用: 线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一 定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划, 能以最少的人力、物力、资金等资源来完成该项任务 下面我们就来看看线性规划在实际中的一些应用: [范例讲解] a) 营养学家指出, 成人良好的日常饮食应该至少提供 0.075kg 的碳水化合物, 0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物 A 含有 0.105kg 碳水化合物, 0.07kg 蛋白质,0.14kg 脂肪,花费 28 元;而 1kg 食物 B 含有 0.105kg 碳 水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费 21 元。为了满足营养专家 指出的日常饮食要求,同时使花费最低,需要同时食用食物 A 和食物 B 多 少 kg?

指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规 划中最常见的问题之一. b) 在上一节例 3 中, 若根据有关部门的规定, 初中每人每年可收取学费 1 600 元,高中每人每年可收取学费 2 700 元。那么开设初中班和高中班各多少 个,每年收取的学费总额最高多?

指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一 结合上述两例子总结归纳一下解决这类问题的思路和方法: 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解, 无论此类题目是以 什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解

3.随堂练习
课本第 91 页练习 2

4.课时小结
线性规划的两类重要实际问题的解题思路: 首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数。然后,用 图解法求得数学模型的解, 即画出可行域, 在可行域内求得使目标函数取得最值的解, 最后, 要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解。

5. 作业
课本第 93 页习题 3.3[A]组的第 3 题

(第 9 课时)
课题: §3.3.2 简单的线性规划 【教学目标】 1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理 论与实际相结合的科学态度和科学道德。 【教学重点】 利用图解法求得线性规划问题的最优解; 【教学难点】 把实际问题转化成线性规划问题, 并给出解答, 解决难点的关键是根据实际问题中的已知条 件,找出约束条件和目标函数,利用图解法求得最优解。 【教学过程】

1.课题导入
[复习引入]: 1、 二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有

点组成的平面区域(虚线表示区域不包括边界直线) 2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解: 3、用图解法解决简单的线性规划问题的基本步骤:

2.讲授新课
1.线性规划在实际中的应用: c) 在上一节例 4 中,若生产 1 车皮甲种肥料,产生的利润为 10 000 元;生产 1 车 皮乙种肥料,产生的利润为 5 000 元,那么分别生产甲、乙两种肥料各多少车皮, 能够产生最大的利润?

2.课本第 91 页的“阅读与思考”——错在哪里? 若实数 x , y 满足

?1 ? x ? y ? 3 ? ??1 ? x ? y ? 1

求 4 x +2 y 的取值范围.

错解:由①、②同向相加可求得: 0≤2 x ≤4 即 由②得 0≤4 x ≤8 ③ ④ —1≤ y — x ≤1

将上式与①同向相加得 0≤2 y ≤4 ③十④得 0≤4 x 十 2 y ≤12 以上解法正确吗?为什么? (1)[质疑]引导学生阅读、讨论、分析.

(2)[辨析]通过讨论, 上述解法中, 确定的 0≤4 x ≤8 及 0≤2 y ≤4 是对的, 但用 x 的最大(小) 值及 y 的最大(小)值来确定 4 x 十 2 y 的最大(小)值却是不合理的.X 取得最大(小)值时, y 并不能同时取得最大(小)值。由于忽略了 x 和 y 的相互制约关系,故这种解法不正确. (3)[激励]产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解? 正解: 因为 4x+2y=3(x+y)+(x-y) 且由已有条件有:

3 ? 3( x ? y) ? 9 ?1 ? x ? y ? 1

(5) (6)

将(5)(6)两式相加得 所以

2 ? 4 x ? 2 y ? 3( x ? y) ? ( x ? y) ? 10 2 ? 4 x ? 2 y ? 10

3.随堂练习 1

?x ? y ? 2 ? 1、求 z ? x ? y 的最大值、最小值,使 x 、 y 满足条件 ? x ? 0 ?y ? 0 ?
2、设 z ? 2 x ? y ,式中变量 x 、 y 满足

? x ? 4 y ? ?3 ? ?3 x ? 5 y ? 25 ?x ? 1 ?

4.课时小结
[结论一]线性目标函数的最大值、最小值一般在可行域的顶点处取得. [结论二]线性目标函数的最大值、 最小值也可能在可行域的边界上取得, 即满足条件的最优 解有无数多个.

5. 作业
课本第 93 页习题 3.3[A]组的第 4 题

(第 10 课时)
课题: §3.4 基本不等式 ab ?

a?b 2

【教学目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定 理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】 应用数形结合的思想理解不等式,并从不同角度探索不等式 ab ? 【教学难点】

a?b 的证明过程; 2

基本不等式 ab ? 【教学过程】

a?b 等号成立条件 2

1.课题导入
基本不等式 ab ?

a?b 的几何背景: 2

如图是在北京召开的第 24 界国际数学家大会的会标, 会标是根据中国古代数学 家赵爽的弦图设计的, 颜色的明暗使它看上去象一个风车, 代表中国人民热情好客。 你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。

2.讲授新课
1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形 ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为 a,b 那么正方形的边长为 a 2 ? b2 。这样,4 个直角三角形的面积的 和是 2ab,正方形的面积为 a ? b 。由于 4 个直角三角形的面积小于正方形的面积,我们
2 2

就得到了一个不等式: a ? b ? 2ab 。
2 2

当直角三角形变为等腰直角三角形,即 a=b 时,正方形 EFGH 缩为一个点,这时有

a 2 ? b2 ? 2ab 。
2.得到结论:一般的,如果 a, b ? R, 那么a 2 ? b 2 ? 2ab(当且仅当 a ? b时取" ?"号) 3.思考证明:你能给出它的证明吗? 证明:因为

a 2 ? b 2 ? 2ab ? (a ? b) 2


a ? b时,(a ? b)2 ? 0,当a ? b时,(a ? b)2 ? 0,
所以, (a ? b) ? 0 ,即 (a ? b ) ? 2ab.
2 2 2

4.1)从几何图形的面积关系认识基本不等式 ab ?

a?b 2

特别的,如果 a>0,b>0,我们用分别代替 a、b ,可得 a ? b ? 2 ab , 通常我们把上式写作: ab ?

a?b (a>0,b>0) 2 a?b 2)从不等式的性质推导基本不等式 ab ? 2 a?b ? ab 2
a+b ? (1) (2)

用分析法证明: 要证 只要证

要证(2),只要证 要证(3),只要证

a+b( -

?0

2

(3) (4)

显然,(4)是成立的。当且仅当 a=b 时,(4)中的等号成立。

3)理解基本不等式 ab ?

a?b 的几何意义 2

探究:课本第 98 页的“探究” 在右图中,AB 是圆的直径,点 C 是 AB 上的一点,AC=a,BC=b。过点 C 作垂直于 AB 的弦 DE,连接 AD、BD。你能利用这个图形得出基本不等式 ab ? 何解释吗? 易证Rt△ACD∽Rt△DCB,那么CD =CA·CB 即CD= ab . 这个圆的半径为
2

a?b 的几 2

a?b a?b ? ab ,其中当且仅当点 C 与 ,显然,它大于或等于 CD,即 2 2 a?b 几何意义是“半径不小于半弦” 2

圆心重合,即 a=b 时,等号成立. 因此:基本不等式 ab ? 评述:1.如果把

a?b 看作是正数 a、b 的等差中项, ab 看作是正数 a、b 的等比中项, 2 a?b 为 a、b 的算术平均数,称 ab 为 a、b 的几何平均数.本 2

那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项. 2.在数学中,我们称

节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数. [补充例题] 例 1 已知 x、y 都是正数,求证: (1)

y x ? ≥2; x y
2 2 3 3 3 3

(2)(x+y)(x +y )(x +y )≥8x y . 分析:在运用定理:

a?b ? ab 时,注意条件 a、b 均为正数,结合不等式的性质(把 2
y x 2 2 3 3 >0, >0,x >0,y >0,x >0,y >0 x y

握好每条性质成立的条件),进行变形. 解:∵x,y 都是正数 ∴

(1)

x y x y x y ? ?2 ? =2 即 ? ≥2. y x y x y x

(2)x+y≥2 >0

xy >0

2 2 x2+y2≥2 x y >0

3 3 x3+y3≥2 x y

2 2 3 3 2 2 3 3 3 3 ∴(x+y)(x +y )(x +y )≥2 xy ·2 x y ·2 x y =8x y

即(x+y)(x +y )(x +y )≥8x y .

2

2

3

3

3 3

3.随堂练习 1.已知 a、b、c 都是正数,求证 (a+b)(b+c)(c+a)≥8abc
分析:对于此类题目,选择定理: 果. 解:∵a,b,c 都是正数 ∴a+b≥2 ab >0

a?b ? ab (a>0,b>0)灵活变形,可求得结 2

b+c≥2 bc >0 c+a≥2 ac >0
∴(a+b)(b+c)(c+a)≥2 ab ·2 bc ·2 ac =8abc 即(a+b)(b+c)(c+a)≥8abc.

4.课时小结
本节课,我们学习了重要不等式 a +b ≥2ab;两正数 a、b 的算术平均数( 几何平均数( ab )及它们的关系(
2 2

a?b ), 2

a?b ≥ ab ).它们成立的条件不同,前者只要求 a、 2

b 都是实数,而后者要求 a、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值
的重要工具(下一节我们将学习它们的应用 ).我们还可以用它们下面的等价变形来解决问 题:ab≤

a?b 2 a 2 ? b2 ,ab≤( ). 2 2

5. 作业
课本第 100 页习题[A]组的第 1 题

(第 11 课时)
课题: §3.4 基本不等式 ab ? 【教学目标】 1.知识与技能:进一步掌握基本不等式 ab ? 能够解决一些简单的实际问题

a?b 2

a?b ;会应用此不等式求某些函数的最值; 2

2.过程与方法:通过两个例题的研究,进一步掌握基本不等式 ab ?

a?b ,并会用此定 2

理求某些函数的最大、最小值。 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理 论与实际相结合的科学态度和科学道德。 【教学重点】 基本不等式 ab ? 【教学难点】 利用基本不等式 ab ? 【教学过程】

a?b 的应用 2
a?b 求最大值、最小值。 2

1.课题导入
1.重要不等式: 如果 a, b ? R, 那么a 2 ? b 2 ? 2ab(当且仅当 a ? b时取" ?"号) 2.基本不等式:如果 a,b 是正数,那么 ??我们称

a?b 为a, b 的算术平均数,称 ab为a, b 的几何平均数? 2

a?b ? ab (当且仅当 a ? b时取" ?"号). 2

a 2 ? b 2 ? 2ab和

a?b 2

? ab 成立的条件是不同的:前者只要求 a,b 都是实数,而后者

要求 a,b 都是正数。

2.讲授新课
例 1(1)用篱笆围成一个面积为 100m 的矩形菜园,问这个矩形的长、宽各为多少时, 所用篱笆最短。最短的篱笆是多少? (2)段长为 36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少 时,菜园的面积最大,最大面积是多少? 解:(1)设矩形菜园的长为 x m,宽为 y m,则 xy=100,篱笆的长为 2(x+y) m。由
2

x? y ? xy , 2
可得

x ? y ? 2 100 ,

2( x ? y) ? 40 。 等号当且仅当 x=y 时成立, 此时 x=y=10.
1 ,其 2

因此,这个矩形的长、宽都为 10m 时,所用的篱笆最短,最短的篱笆是 40m. (2)解法一:设矩形菜园的宽为 x m,则长为(36-2x)m,其中 0<x<

1 1 2 x ? 36 ? 2 x 2 362 ) ? 面积 S=x(36-2x)= ·2x(36-2x)≤ ( 2 2 2 8
当且仅当 2x=36-2x,即 x=9 时菜园面积最大,即菜园长 9m,宽为 9 m 时菜园面积最 大为 81 m2

解法二:设矩形菜园的长为 x m.,宽为 y m ,则 2(x+y)=36, x+y=18,矩形菜园的面积为 xy m 。由
2

xy ?

x ? y 18 ? ? 9 ,可得 2 2

xy ? 81

当且仅当 x=y,即 x=y=9 时,等号成立。 因此,这个矩形的长、宽都为 9m 时,菜园的面积最大,最大面积是 81m


2

归纳:1.两个正数的和为定值时,它们的积有最大值,即若 a,b∈R ,且 a+b=M,M 为定值,则 ab≤

M2 ,等号当且仅当 a=b 时成立. 4


2.两个正数的积为定值时,它们的和有最小值,即若 a,b∈R ,且 ab=P,P 为 定值,则 a+b≥2 P ,等号当且仅当 a=b 时成立. 例 2 某工厂要建造一个长方体无盖贮水池,其容积为 4800m3,深为 3m,如果池底每 1m2 的造价为 150 元,池壁每 1m2 的造价为 120 元,问怎样设计水池能使总造价最低,最低总造 价是多少元? 分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最 值,其中用到了均值不等式定理。 解:设水池底面一边的长度为 xm,水池的总造价为 l 元,根据题意,得

l ? 240000 ? 720 ( x ?

1600 ) x

? 240000? 720? 2 x ?

1600 x ? 240000? 720? 2 ? 40 ? 297600
1600 , 即x ? 40时, l有最小值 2976000 . x

当x ?

因此,当水池的底面是边长为 40m 的正方形时,水池的总造价最低,最低总造价是 297600 元 评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立, 又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。 归纳:用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案.

3.随堂练习

1.已知 x≠0,当 x 取什么值时,x + 2.课本第 100 页的练习 1、2、3、4

2

81 的值最小?最小值是多少? x2

4.课时小结
本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值 问题。在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考 查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项 的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值 即用均 值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。
王新敞
奎屯 新疆

5. 作业
课本第 100 页习题[A]组的第 2、4 题

(第 12 课时)

课题: §3.4 基本不等式 ab ? 【教学目标】 1.知识与技能:进一步掌握基本不等式 ab ?

a?b 2

a?b ;会用此不等式证明不等式,会应用此 2 a?b ,并会用此定理求 2

不等式求某些函数的最值,能够解决一些简单的实际问题; 2.过程与方法:通过例题的研究,进一步掌握基本不等式 ab ?

某些函数的最大、最小值。 3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理 论与实际相结合的科学态度和科学道德。 【教学重点】 掌握基本不等式 ab ?

a?b ,会用此不等式证明不等式,会用此不等式求某些函数的最值 2

【教学难点】 利用此不等式求函数的最大、最小值。 【教学过程】

1.课题导入
1.基本不等式:如果 a,b 是正数,那么 2.用基本不等式 ab ?

a?b 求最大(小)值的步骤。 2

a?b ? ab (当且仅当 a ? b时取" ?"号). 2

2.讲授新课
1)利用基本不等式证明不等式

24 ? 6m ? 24 。 m 24 [思维切入]因为 m>0,所以可把 和 6 m 分别看作基本不等式中的 a 和 b, 直接利用基本不 m
例 1 已知 m>0,求证 等式。 [证明]因为 m>0,,由基本不等式得

24 24 ? 6m ? 2 ? ? 6m ? 2 24 ? 6 ? 2 ?12 ? 24 m m
当且仅当

24 = 6 m ,即 m=2 时,取等号。 m 24 ? 6m =144 为定值的前提条件。 m

规律技巧总结 注意:m>0 这一前提条件和

3.随堂练习 1
[思维拓展 1] 已知 a,b,c,d 都是正数,求证 (ab ? cd )(ac ? bd ) ? 4abcd . [思维拓展 2] 求证 (a ? b )(c ? d ) ? (ac ? bd ) .
2 2 2 2 2

例 2 求证:

4 ?a ? 7. a ?3

[思维切入] 由于不等式左边含有字母 a,右边无字母,直接使用基本不等式,无法约掉字母 a,而左边

4 4 ?a ? ? (a ? 3) ? 3 .这样变形后,在用基本不等式即可得证. a ?3 a ?3

[证明]

4 4 4 ?3? ? (a ? 3) ? 3 ? 2 (a ? 3) ? 3 ? 2 4 ? 3 ? 7 a ?3 a ?3 a ?3
4 =a-3 即 a=5 时,等号成立. a?3

当且仅当

规律技巧总结 通过加减项的方法配凑成基本不等式的形式. 2)利用不等式求最值

9 的最小值; x 9 (2)若 x<0,求 f ( x ) ? 4 x ? 的最大值. x 9 [思维切入]本题(1)x>0 和 4 x ? =36 两个前提条件;(2)中 x<0,可以用-x>0 来转化. x
例 3 (1) 若 x>0,求 f ( x ) ? 4 x ? 解(1) 因为 x>0 由基本不等式得

f ( x) ? 4 x ?

9 3 9 9 9 ? 2 4 x ? ? 2 36 ? 12 ,当且仅当 4 x ? 即 x= 时, f ( x) ? 4 x ? 取 x 2 x x x

最小值 12. (2)因为 x<0, 所以 -x>0, 由基本不等式得:

9 9 9 ? f ( x) ? ?(4 x ? ) ? (?4 x) ? (? ) ? 2 (?4 x) ? (? ) ? 2 36 ? 12 , x x x
所以

f ( x) ? 12 .
9 3 9 即 x=- 时, f ( x ) ? 4 x ? 取得最大-12. 2 x x

当且仅当 ?4 x ? ?

规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.

随堂练习 2
[思维拓展 1] 求 f ( x ) ? 4 x ?

9 (x>5)的最小值. x?5

[思维拓展 2] 若 x>0,y>0,且

2 8 ? ? 1 ,求 xy 的最小值. x y

4.课时小结
用基本不等式 ab ?

a?b 证明不等式和求函数的最大、最小值。 2
2.若 x ? ?1 ,则 x 为何值时 x ?

5. 作业
1.证明:a ? b ? 2 ? 2a ? 2b
2 2

1 有最小值, x ?1

最小值为几?

(第 13 课时)
课题: 《不等式》复习小结 【教学目标】 1.会用不等式(组)表示不等关系; 2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小; 3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系; 4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题; 5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。 【教学重点】 不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线 性目标函数在线性约束条件下的最优解,基本不等式的应用。 【教学难点】 利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。 【教学过程】

1.本章知识结构

2.知识梳理
(一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性: a ? b ? b ? a (2)传递性: a ? b, b ? c ? a ? c (3)加法法则: a ? b ? a ? c ? b ? c ; a ? b, c ? d ? a ? c ? b ? d (4)乘法法则: a ? b, c ? 0 ? ac ? bc ; a ? b, c ? 0 ? ac ? bc

a ? b ? 0, c ? d ? 0 ? ac ? bd
(5)倒数法则: a ? b, ab ? 0 ?
n

1 1 ? a b
n

(6)乘方法则: a ? b ? 0 ? a ? b (n ? N * 且n ? 1) (7)开方法则: a ? b ? 0 ? n a ? n b (n ? N * 且n ? 1) 2、应用不等式的性质比较两个实数的大小; 作差法 3、应用不等式性质证明 (二)一元二次不等式及其解法

一元二次不等式的解法 一元二次不等式 ax2 ? bx ? c ? 0或ax2 ? bx ? c ? 0?a ? 0? 的解集: 设相应的一元二次方程 ax2 ? bx ? c ? 0?a ? 0? 的两根为 x1、x2 且 x1 ? x2 ,? ? b ? 4ac ,
2

则不等式的解的各种情况如下表:(让学生独立完成课本第 86 页的表格)

??0

??0

??0

y ? ax2 ? bx ? c

y ? ax2 ? bx ? c

y ? ax2 ? bx ? c

二次函数
y ? ax2 ? bx ? c

(a ? 0) 的图象

一元二次方程

有两相异实根
x1 , x2 ( x1 ? x2 )

有两相等实根
x1 ? x 2 ? ? b 2a

?a ? 0?的根

ax2 ? bx ? c ? 0

无实根

ax2 ? bx ? c ? 0 (a ? 0)的解集 ax2 ? bx ? c ? 0 (a ? 0)的解集

?x x ? x 或x ? x ?
1 2

? b? ?x x ? ? ? 2a ? ?

R

?x x

1

? x ?x 2 ?

? ?

(三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式 Ax+By+C>0 在平面直角坐标系中表示直线 Ax+By+C=0 某一侧所有点组 成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线 Ax+By+C=0 同一侧的所有点( x , y ),把它的坐标( x , y )代入 Ax+By+C, 所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点( x0,y0),从 Ax0+By0+C 的正负即可判断 Ax+By+C>0 表示直线哪一侧的平面区域.(特殊地,当 C≠0 时,常把原点 作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量 x、y 的约束条件,这组约束条 件都是关于 x、y 的一次不等式,故又称线性约束条件. ②线性目标函数:

关于 x、y 的一次式 z=2x+y 是欲达到最大值或最小值所涉及的变量 x、y 的解析式,叫 线性目标函数. ③线性规划问题: 一般地, 求线性目标函数在线性约束条件下的最大值或最小值的问题, 统称为线性规划 问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x,y)叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解

a?b 2 a?b ? ab (当且仅当 a ? b时取" ?"号). 1、如果 a,b 是正数,那么 2 a?b 2、基本不等式 ab ? 几何意义是“半径不小于半弦” 2
(四)基本不等式 ab ?

3.典型例题
1、用不等式表示不等关系 例 1、某电脑用户计划用不超过 500 元的资金购买单价分别为 60 元、70 元的单片软件和盒 装软件,根据需要,软件至少买 3 片,磁盘至少买 2 盒,写出满足上述不等关系的不等式。

例 2、咖啡馆配制两种饮料,甲种饮料用奶粉、咖啡、糖,分别为 9g、4g、3g;乙种饮料用 奶粉、 咖啡、 糖,分别为 4g、5g、5g.已知买天使用原料为奶粉 3600g,咖啡 2000g,糖 3000g。 写出配制两种饮料杯数说所满足的所有不等关系的不等式。

5、 比较大小 例 3 (1)( 3 + 2 ) (2)( 3 - 2 )2 (3)
2

6+2 6 ; ( 6 -1)2;

1 5?2

1 ; 6? 5

(4)当 a>b>0 时,log 1 a
2

log 1 b
2

(5) (a+3)(a-5) (6) ( x2 ? 1)2

(a+2)(a-4)

x4 ? x2 ? 1

6、 利用不等式的性质求取值范围 例 4 如果 30 ? x ? 42 , 16 ? y ? 24 ,则 (1) x ? y 的取值范围是 (3) xy 的取值范围是 , (2) x ? 2 y 的取值范围是 ,

, (4)

x 的取值范围是 y

例 5 已知函数 f ( x) ? ax 2 ? c ,满足 ?4 ? f (1) ? ?1, ?1 ? f (2) ? 5 ,那么 f (3) 的取值范围是 .

[思维拓展]已知 ?1 ? a ? b ? 5 , ?1 ? a ? b ? 3 ,求 3a ? 2b 的取值范围。([-2,0])

7、 解一元二次不等式 例 6 解不等式:(1) 2 x ? 7 x ? 4 ? 0 ;(2) ? x ? 8 x ? 3 ? 0
2 2

例 7 已知关于 x 的方程(k-1)x +(k+1)x+k+1=0 有两个相异实根,求实数 k 的取值范围

2

8、 二元一次方程(组)与平面区域

?x ? y ? 6 ? 0 ?x ? y ? 0 ? 例 8 画出不等式组 ? 表示的平面区域。 y ? 3 ? ? ?x ? 5

9、 求线性目标函数在线性约束条件下的最优解

?x ? 2 y ? 2 ? 例 9 已知 x、y 满足不等式 ?2 x ? y ? 1 ,求 z=3x+y 的最小值。 ? x ? 0, y ? 0 ?

?2 x ? y ? 300 ? x ? 2 y ? 250 ? [思维拓展] 已知 x、y 满足不等式组 ? ,试求 z=300x+900y 的最大值时的整 ?x ? 0 ? ?y ? 0
点的坐标,及相应的 z 的最大值

10、

利用基本不等式证明不等式
2 2 2 2 2

例 8 求证 (a ? b )(c ? d ) ? (ac ? bd )

11、

利用基本不等式求最值

例 9 若 x>0,y>0,且

2 8 ? ? 1 ,求 xy 的最小值 x y

[思维拓展] 求 f ( x ) ? 4 x ?

9 (x>5)的最小值. x?5

4.评价设计
课本第 103 页复习参考题[A]组的第 1、2、3、4、5、6、7、8 题。


高中数学必修五全套教案

高中数学必修五全套教案_高考_高中教育_教育专区。好用 第一章 解三角形章节总体设计(一)要求 本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的...

高中数学必修五全套教案

高中数学必修五全套教案_数学_高中教育_教育专区。(第 1 课时)课题 §2.1 数列的概念与简单表示法 ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数...

高中数学必修五全套教案

高中数学必修五全套教案_高三数学_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 高中数学必修五全套教案_高三数学_数学_高中教育_教育专区。高中数学...

高中数学必修五全套教案(非常好的)

高中数学必修五全套教案(非常好的)_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 高中数学必修五全套教案(非常好的)_数学_高中教育_教育专区。(...

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案_高三数学_数学_高中教育_教育专区。高中数学人教版必修5全套教案 课题: §1.1.1 正弦定理授课类型:新授课 ●教学目标 知识与技能:...

新课标高中数学人教A版必修必修5全套教案

新课标高中数学人教A版必修必修5全套教案_数学_高中教育_教育专区。1.1.1 正弦定理 (一)教学目标 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及...

人教A版高中数学必修五全册教案

2015 年 1 月 22 日 人教 A 版高中数学必修五全册教案 1.1.1 正弦定理●...课时小结 解三角形的应用题时,通常会遇到两种情况: (1)已知量与未知量全部...

高中数学必修五全套教案

高中数学必修五全套教案_高二数学_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档高中数学必修五全套教案_高二数学_数学_高中教育_教育专区。[探索研究...

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档高中数学人教版必修5全套教案_数学_高中教育_教育专区。课题: §1.1.1...

高中数学人教版必修5全套教案

高中数学必修5全套教案 54页 1下载券 人教版高中数学必修5教案... 84页 2下载...培养学生合 情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量...