nbhkdz.com冰点文库

高中化学奥林匹克竞赛辅导讲座 第7讲 化学反应速率与化学平衡


高中化学奥林匹克竞赛辅导讲座 第 7 讲 化学反应速率与化学平衡
【竞赛要求】 反应速率基本概念。反应级数。用实验数据推求反应级数。一级反应积分式及有关计算(速率常数、 半衰期、碳-14 法推断年代等等) 。阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度 对速率常数影响的计算等) 。活化能与反应热的关系。反应机理一般概念。推求速率方程。催化剂对反应 影响

的本质。标准自由能与标准平衡常数。平衡常数与温度的关系。平衡常数与转化率。利用平衡常数的 计算。热力学分解温度(标态与非标态) 。克拉贝龙方程及其应用(不要求微积分) 。 【知识梳理】 一、化学反应速率 (一)反应速率及其表示方法 在化学反应中,某物质的浓度(物质的量浓度)随时间的变化率称反应速率。反应速率只能为正值, 且并非矢量。 1、平均速率 用单位时间内,反应物浓度的减少或生成物浓度的增加来表示。

?= ?

?c ?t
2 N2O5 ?

(7-1)

当△c 为反应物浓度的变化时,取负号;△c 为生成物浓度的变化时,取正号。如: 4 NO2 0 0.30 0.30 + O2 0 0.075 0.075

反应前浓度/ mol·dm

-3 -3 -3

2.10 1.95 – 0.15 100

100s 后浓度/ mol·dm

浓度变化(△c)/ mol·dm 变化所需时间 (△t)/s

? 0.15 - - - = 1.5× 3 mol·dm 3·s 1 10 ?t 100 ?c NO2 0.30 - - - ? NO2 = = = 3.0× 3 mol·dm 3·s 1 10 ?t 100 ? c O2 0.075 - - - ? O2 = = = 7.5× 4mol·dm 3·s 1 10 ?t 100

?

N 2 O5

=–

?c N 2O5

=–

显然,以上计算所得的反应速率是在时间间隔为△t 时的平均速率,他们只能描述在一定时间间隔内 反应速率的大致情况。 2、瞬时速率 若将观察的时间间隔△t 缩短,它的极限是△t ?0,此时的速率即为某一时刻的真实速率—— 瞬时速 率:

?

瞬时

=

lim( ?
△t ?0

?c dc )= ? ?t dt

(7-2)

对于下面的反应来说,a A+ b B = g G+ h H 其反应速率可用下列任一表示方法表示: –

dc dc A dcB dc ,– , G , H dt dt dt dt

注意:这几种速率表示法不全相等,但有下列关系: –

dc dc 1 1 dc 1 dc H 1 · A =– · B = · G = · g b h a dt dt dt dt

(7-3)

瞬时速率可用实验作图法求得。即将已知浓度的反应物混合,在指定温度下,每隔一定时间,连续取 样分析某一物质的浓度,然后以 c – t 作图。求某一时刻时曲线的斜率,即得该时刻的瞬时速率。 (二)反应速率理论简介 1、碰撞理论 化学反应的发生,总要以反应物之间的接触为前提,即反应物分子之间的碰撞是先决条件。 没有粒 子间的碰撞,反应的进行则无从说起。看如下计算数据。有反应: 2HI(g)→ H2(g)+ I2(g) 反应物浓度:10
-3

mol·dm 3(不浓)



反应温度:973 K 计算结果表明,每 s 每 dm3 的体积内,碰撞总次数为:3.5×1028 次 计算反应速率为: ? = 3.5×1028/6.02× 23 = 5.8× 4 mol·dm 3·s 10 10
- -1

实际反应速率为:1.2× 10 相差甚远,原因何在? (1)有效碰撞

-6

mol·dm 3·s



-1

看来,并非每一次碰撞都发生预期的反应,只有非常少非常少的碰撞是有效的。首先,分子无限接近 时,要克服斥力,这就要求分子具有足够的运动速度,即能量。具备足够的能量是有效碰撞的必要条件。 一组碰撞的反应物的分子的总能量必须具备一个最低的能量值,这种能量分布符合从前所讲的分布原则。 用 E 表示这种能量限制,则具备 E 和 E 以上的分子组的分数为:

f ?e

?

E RT

(7-4)

其次,仅具有足够能量尚不充分,分子有构型,所以碰撞方向还会有所不同,如反应: NO2 + CO = NO + CO2 的碰撞方式有:

显然,(a) 种碰接有利于反应的进行,(b) 种以及许多其它碰撞方式都是无效的。取向适合的次数占总 碰撞次数的分数用 p 表示。 若单位时间内,单位体积中碰撞的总次数为 Z mol,则反应速率可表示为:

?=Zpf
其中 ,p 称为取向因子,f 称为能量因子。或写成:

(7-5)

? = Z pe

?

E RT

(7-6)

(2)活化能和活化分子组 将具备足够能量(碰撞后足以反应)的反应物分子组,称为活化分子组。 从(7-6)式可以看出,分子组的能量要求越高,活化分子组的数量越少。这种能量要求称之为活化能, 用 Ea 表示。Ea 在碰撞理论中,认为和温度无关。 Ea 越大,活化分子组数则越少,有效碰撞分数越小,故反应速率越慢。 不同类型的反应,活化能差别很大。如反应: 2SO2 + O2 = 2SO3 Ea = 251 kJ·mol N2 + H2 = 2NH3 而中和反应: HCl + NaOH = NaCl + H2O Ea ≈ 20 kJ·mol
-1 -1 -1

Ea = 175.5 kJ·mol

分子不断碰撞,能量不断转移,因此,分子的能量不断变化,故活化分子组也不是固定不变的。但只 要温度一定,活化分子组的百分数是固定的。 2、过渡状态理论 (1)活化络合物 当反应物分子接近到一定程度时,分子的键连关系将发生变化,形成一中间过渡状态,以 NO2 + CO = NO + CO2 为例:

N—O 部分断裂,C—O 部分形成,此时分子的能量主要表现为势能。

称活化络合物。活化络合物能量高,不稳定。它既可以进一步发展,成为产物; 也可以变成原来的反应物。于是,反应速率决定于活化络合物的浓度,活化络合物分解成产物的几率和分 解成产物的速率。 过渡态理论,将反应中涉及到的物质的微观结构和反应速率结合起来,这是比碰撞理论先进的一面。 然而,在该理论中,许多反应的活化络合物的结构尚无法从实验上加以确定,加上计算方法过于复杂,致 使这一理论的应用受到限制。 (2)反应进程—势能图 应用过渡态理论讨论化学反应时,可将反应过程中体系势能变化情况表示在反应进程—势能图上。 以 NO2 + CO = NO + CO2 为例:

A 反应物的平均能量;B 活化络合物的能量;C 产物的平均能量 反应进程可概括为: (a)反应物体系能量升高,吸收 Ea; (b)反应物分子接近,形成活化络合物; (c)活化络合物分解成产物,释放能量 Ea’ 。 Ea 可看作正反应的活化能,是一差值;Ea’ 为逆反应的活化能。

由盖斯定律:① + ②得

NO2 + CO → NO + CO2

所以,△r H = △r H1 + △r H2 = Ea - Ea’ 若 Ea > Ea’,△r H> 0,吸热反应;若 Ea < Ea’,△r H < 0,放热反应。 △r H 是热力学数据,说明反应的可能性;但 Ea 是决定反应速率的活化能,是现实性问题。 在过渡态理论中,Ea 和温度的关系较为明显,T 升高,反应物平均能量升高,差值 Ea 要变小些。 (三)影响化学反应速率的因素 影响化学反应速率的因素很多,除主要取决于反应物的性质外,外界因素也对反应速率有重要作用, 如浓度、温度、压力及催化剂等。 1、浓度对反应速率的影响 (1)基元反应和非基元反应 基元反应:能代表反应机理、由反应物微粒(可以是分子、原子、离子或自由基)一步直接实现的化 学反应,称为基元步骤或基元反应。 非基元反应:由反应物微粒经过两步或两步以上才能完成的化学反应,称为非基元反应。在非基元反 应中,由一个以上基元步骤构成的反应称为非基元反应或复杂反应。如复杂反应 H2 + Cl2 = 2HCl 由几个基元步骤构成,它代表了该链反应的机理: Cl2 + M → 2Cl· + M Cl· + H2 → HCl + H· H· + Cl2 → HCl + Cl· 2Cl· + M → Cl2 + M

式中 M 表示只参加反应物微粒碰撞而不参加反应的其他分子,如器壁,它只起转移能量的作用。 (2)反应分子数 在基元步骤中,发生反应所需的最少分子数目称为反应分子数。根据反应分子数可将反应区分为单分 子反应、双分子反应和三分子反应三种,如: 单分子反应 双分子反应 三分子反应 CH3COCH3 → CH4 + CO + H2 CH3COOH + C2H5OH → CH3COOC2H5 + H2O H2 + 2I·→ 2HI

反应分子数不可能为零或负数、分数,只能为正整数,且只有上面三种数值,从理论上分析,四分子 或四分子以上的反应几乎是不可能存在的。反应分子数是理论上认定的微观量。 (3)速率方程和速率常数 大量实验表明,在一定温度下,增大反应物的浓度能够增加反应速率。那么反应速率与反应物浓度之 间存在着何种定量关系呢?人们在总结大量实验结果的基础上,提出了质量作用定律:在恒温下,基元反 应的速率与各种反应物浓度以反应分子数为乘幂的乘积成正比。 对于一般反应(这里指基元反应) a A+ bB → gG+ hH 质量作用定律的数学表达式:

? = k·c (aA) ·c bB) (

(7-7)
-3

称为该反应的速率方程。式中 k 为速率常数,其意义是当各反应物浓度为 1 mol·dm 对于速率常数 k,应注意以下几点:

时的反应速率。

①速率常数 k 取决反应的本性。当其他条件相同时快反应通常有较大的速率常数,k 小的反应在相同 的条件下反应速率较慢。 ②速率常数 k 与浓度无关。 ③k 随温度而变化,温度升高,k 值通常增大。 ④k 是有单位的量,k 的单位随反应级数的不同而异。 前面提到,可以用任一反应物或产物浓度的变化来表示同一反应的速率。此时速率常数 k 的值不一定 相同。例如:2NO + O2 = 2NO2 其速率方程可写成:

? ? ?
由于 则 –

( NO )

=– =– =

dc ( NO ) dt dc(O2 )
dt dc ( NO 2 ) dt

2 = k1·c ( NO ) ·c (O2 )
2 = k2·c ( NO ) ·c (O2 )

( O2 )

( NO2 )

2 = k3·c ( NO ) ·c (O2 )

dc(O2 ) 1 dc ( NO ) 1 dc ( NO 2 ) = = dt dt 2 dt 2 1 1 k1 = k2 = k3 2 2

对于一般的化学反应

k ( A) a

=

k ( B) b

=

k (G) g

=

k(H ) h

(7-8)

确定速率方程时必须特别注意,质量作用定律仅适用于一步完成的反应——基元反应,而不适用于几 个基元反应组成的总反应——非基元反应。如 N2O5 的分解反应: 2N2O5 = 4NO2 + O2 实际上分三步进行: N2O5 → NO2 + NO3 NO2 + NO3 → NO2 + O2 + NO NO + NO3 → 2NO2 实验测定起速率方程为: 慢(定速步骤) 快 快

? = kc ( N 2O5 )
它是一级反应,不是二级反应。 (4)反应级数 通过实验可以得到许多化学反应的速率方程,如表-1 表-1 某些化学反应的速率方程

化学反应

速率方程

反应级数 1

1、2H2O2 = 2H2O + O2
2 2、S2O 8 ? + 2I- = 2SO 2 ? + I2 4

? = k·c

( H 2O2 )

? = k·c
? = k·c

2 ( S2O8 ? )

·c ( I ? )

1+1=2

3、4HBr + O2 = 2H2O + 2Br2

(HBr )

·c (O2 )

1+1=2

4、2NO + 2H2 = N2 + 2H2O

? = k·c (2NO ) ·c ( H 2 ) ? = k·c 3CH 3CHO ) ( ? = k·c (2NO2 )

2+1=2

5、CH3CHO = CH4 + CO

3/2

6、2NO2 = 2NO + O2

2

由速率方程可以看出化学反应的速率与其反应物浓度的定量关系,对于一般的化学反应: a A+ bB → g G + h H
m n 其速率方程一般可表示为: ? = k·c ( A) ·c ( B)

式中的 c ( A) 、c (B) 表示反应物 A、B 的浓度,a、b 表示 A、B 在反应方程式中的计量数。m、n 分别表 示速率方程中 c ( A) 和 c (B) 的指数。 速率方程中,反应物浓度的指数 m、n 分别称为反应物 A 和 B 的反应级数,各组分反应级数的代数和 称为该反应的总反应级数。 反应级数 = m + n 可见,反应级数的大小,表示浓度对反应速率的影响程度,级数越大,速率受浓度的影响越大。 若为零级反应,则表示反应速率与反应物浓度无关。某些表面催化反应,例如氨在金属钨表面上的分 解反应,其分解速率在一定条件下与氨的浓度无关就属于零级反应。 观察表中六个反应的反应级数,并与化学方程式中反应物的计量数比较可以明显地看出:反应级数不 一定与计量数相符合,因而对于非基元反应,不能直接由反应方程式导出反应级数。 另外,还应明确反应级数和反应分子数在概念上的区别:①反应级数是根据反应速率与各物质浓度的 关系来确定的;反应分子数是根据基元反应中发生碰撞而引起反应所需的分子数来确定的。②反应级数可 以是零、正、负整数和分数;反应分子数只可能是一、二、三。③反应级数是对宏观化学反应而言的;反 应分子数是对微观上基元步骤而言的。 (5)一级反应及其特点 凡反应速率与反应物浓度一次方成正比的反应,称为一级反应,其速率方程可表示为: –

dc dt

= k1c

(7-9)

积分上式可得: lnc = –k1t + B 当 t = 0 时,c = c0 (起始浓度) ,则 B = lnc。故上式可表示为: ln 或 (7-10)

c0 = k1t c 1 c k1 = ln 0 t c

(7-11) (7-12)

亦可表示为:c = c0 e ? k1t

若以 a 表示 t = 0 时的反应物的浓度,以 x 表示 t 时刻已反应掉的反应物浓度,于是(7-11)式可写为: k1 =

1 a ln t a?x

(7-13)

(7-10)~(7-13)式即为一级反应的速率公式积分形式。 一级反应的特征是: ①速率常数 k1 的数值与所用浓度的单位无关,其量纲为时间 1,其单位可用 s 1,min-1 或 h
- - -1

等表示。

②当反应物恰好消耗一半,即 x =

a 时,此刻的反应时间记为 t 1 (称之为半衰期) ,则(7-13)式变 2 2

为:k1 =

1 ln 2 t1
2

t 1 = 0.6932
2

k1

(7-14)

③以 lgc 对 t 作图应为一直线,其斜率为 ? 2、温度对反应速率的影响

k1 。 2.303

温度对反应速率的影响,主要体现在对速率常数 k 的影响上。Arrhenius(阿仑尼乌斯)总结了 k 与 T 的经验公式:

k ? Ae

?

Ea RT

(7-15)

取自然对数,得:ln k = ? 常用对数: lg k = ?

Ea ? ln A RT

(7-16) (7-17)

Ea ? ln A 2.303RT

式中:k 速率常数 Ea 活化能 R 气体常数 T 绝对温度 e 自然对数底,e = 2.71828……,lg e = 0.4343 = 1/2.303 ,A 指前因子,单位同 k 。 应用阿仑尼乌斯公式讨论问题,可以认为 Ea、A 不随温度变化。由于 T 在指数上,故对 k 的影响较 大。 根据 Arrhenius 公式,知道了反应的 Ea、A 和某温度 T1 时的 k1,即可求出任意温度 T2 时的 k2。 由对数式: lg k1 = ? lg k2 = ? ②-① 得: lg

Ea ? ln A 2.303RT1
Ea ? ln A 2.303RT2

① ② (7-18)

Ea k2 1 1 ( ? ) = 2.303R T1 T2 k1

3、催化剂对反应速率的影响 (1)催化剂和催化反应 在反应中,反应物的数量和组成不变,能改变反应速率的物质,叫催化剂。催化剂改变反应速率的作 用,称为催化作用;有催化剂参加的反应。称为催化反应。 催化反应分为均相催化和非均相催化两类: ①反应和催化剂处于同一相中,不存在相界面的催化反应,称均相催化。如: NO2 催化 2SO2 + O2 = 2SO3 ; 若产物之一对反应本身有催化作用,则称之为自催化反应。如:

2MnO ? + 6H+ + 5H2C2O4 = 10CO2 + 8H2O + 2Mn2+ 4 产物中 Mn2+ 对反应有催化作用。 下图为自催化反应过程的速率变化。初期,反应速率小;中期,经过一段时间 t0–tA 诱导期后,速率 明显加快,见 tA–tB 段;后期, tB 之后,由于反应物耗尽,,速率下降。

②反应物和催化剂不处于同一相,存在相界面,在相界面上进行的反应,叫做多相催化反应或非均相 催化,复相催化。例如: Fe 催化合成氨(固—气) ;Ag 催化 H2O2 的分解(固—液) (2)催化剂的选择性 特定的反应有特定的催化剂。如: 2SO2 + O2 = 2SO3 的催化剂 ① V2O5 ② NO2 ③ Pt;CO + 2H2 = CH3OH 的催化剂 CuO-ZnO-Cr2O3; 酯化反应的催化剂① 浓硫酸 ② 浓硫酸 + 浓磷酸 ③ 硫酸盐 ④ 活性铝 同样的反应,催化剂不同时,产物可能不同。如: CO+2H2 = CH3OH(催化剂 CuO-ZnO- Cr2O3) ;CO+3H2 =CH4 +H2O(催化剂 Ni + Al2O3) 2KClO3 = 2KCl + O2(催化剂 MnO2) ;4KClO3 = 3KClO4 + KCl(无催化剂) (3)催化机理 催化剂改变反应速率,减小活化能,提高产率,不涉及热力学问题。如:A + B = AB Ea 很大,无催化剂,慢;加入催化剂 K,机理改变了:A + B + K = AK + B = AB + K ,快。

图中可以看出,不仅正反应的活化能减小了,而且逆反应的活化能也降低了。因此,正逆反应都加快 了,可使平衡时间提前,但不改变热力学数据! 例如:NO2 催化氧化 SO2 的机理: 总反应为: SO2 + 1/2O2 = SO3 催化机理为:2SO2 + NO2 = SO3 + NO Ea 大,加 NO2 Ea’ 小

NO + 1/2O2 = NO2

Ea” 小

再例如:Fe 表面 N2 + 3H2 合成氨的机理: 总反应为: N2 + 3H2 = 2NH3 催化机理为:N2 + 2Fe = 2N-Fe H2 + 2Fe = 2H-Fe N-Fe + H-Fe = Fe2NH Fe2NH + H-Fe = Fe3NH2 Fe3NH2 + H-Fe = Fe4NH3 Fe4NH3 = 4Fe +NH3 每一步活化能都较小,故反应加快。 二、化学平衡 (一)化学平衡的条件 根据吉布斯自由能判据,在等温等压、Wf = 0 的条件下,△GT,P <0,则化学反应自发地由反应物变 成产物,这时反应物的浓度(分压)逐渐减少,产物的浓度(分压)逐渐增加,反应物和产物布斯自由能 之差逐渐趋于零,直到△GT,P = 0 时达到化学平衡。这时从宏观上看反应似乎停止了,其实从微观上正反 应和逆反应仍在继续进行,只不过两者的反应速率正好相等而已,所以化学平衡是一个动态平衡。 即:等温等压,Wf = 0 的条件下: △GT,P < 0 正反应自发进行; △GT,P = 0 达化学平衡——化学平衡的条件; Fe 催化剂

△GT,P > 0 正反应不自发(逆反应自发) 。 化学反应达平衡时: ①从热力学角度:等温等压,Wf = 0:应△GT,P = 0 ②从动力学角度:r+ = r- ③反应物和生成物的浓度不变,即存在一个平衡常数。 (二)实验平衡常数 大量实验事实证明,在一定条件下进行的可逆反应,其反应物和产物的平衡浓度(处于平衡状态时物 质的浓度)间存在某种定量关系。例如反应: N2O4(g) 2NO2(g)

若将一定量的 N2O4 或(和)NO2 置于 1L 的密闭烧瓶内,然后将烧瓶置于 373K 的恒温槽内,让其充 分反应,达到平衡后,取样分析 N2O4 的平衡浓度,再求算出 NO2 的平衡浓度。三次实验的数据列于表-2。 表-2 N2O4–NO2 体系的平衡浓度(373K) 实验序号 N 2O 4 NO2 起始浓度 /mol·dm–3 0.100 0.000 浓度变化 /mol·dm–3 – 0.060 + 0.120 平衡浓度 /mol·dm–3 0.040 0.36 0.120

[ NO2 ] 2 [ N 2 O4 ]





N 2O 4 NO2

0.000 0.100 0.100 0.100

+ 0.014 – 0.028 – 0.030 + 0.060

0.014 0.37 0.072 0.070 0.36 0.160



N 2O 4 NO2

由表-2 数据可见,恒温条件下,尽管起始状态不同,浓度的变化(即转化率)不同,平衡浓度也不同, 但产物 NO2 的平衡浓度的平方值[NO2]2 与反应物 N2O4 的平衡浓度[N2O4]的比值却是相同的,可用下式表 示:

[ NO2 ] 2 = Kc [ N 2 O4 ]
式中 K c 称为该反应在 373K 时的平衡常数。这个常数是由实验直接测定的,因此常称之为实验平衡常 数或经验平衡常数。 上述关系对一切可逆反应都适用。若可逆反应用下述通式表达: aA+ bB dD+eE

在一定温度下达到平衡时,则有:

[ D] d [ E ] e = Kc [ A] a [ B]b

(7-19)

即在一定温度下,可逆反应达到平衡时,产物的浓度以反应方程式中计量数为指数的幂的乘积与反应 物浓度以反应方程式中计量数为指数的幂的乘积之比是一个常数。 书写平衡常数关系式必须注意以下几点: (1)对于气相反应,平衡常数除可用如上所述的各物质平衡浓度表示外,也可用平衡时各物质的分 压表示如: a A (g)+ b B(g) d D(g) + e E(g) (7-20)

Kp =

( pD ) d ( pE )e ( p A ) a ( pB )b

式中实验平衡常数以 K p 表示,以与前述 K c 相区别。 K p 称为压力常数, K c 称为浓度平衡常数。同一 反应的 K p 与 K c 有固定关系。若将各气体视为理想气体,那么

p A = [A]RT

p B = [B]RT

p D = [D]RT

p E = [E]RT

代入(7-20)式,有

Kp =

[ D] d [ E ] e (RT) ( d ? e ) ?( a ?b ) [ A] a [ B]b
(7-21)

K p = K c (RT) ??

(2)不要把反应体系中纯固体、纯液体以及稀水溶液中的水的浓度写进平衡常数表达式。例如: CaCO3(s) CaO(s) + CO2(g) K = p CO2 2CrO 2 ? (aq) + 2H+(aq) 4
2 K = [CrO 2 ? ]2[H+]/[ Cr2O 7 ? ] 4

2 Cr2O 7 ? (aq) + H2O(I)

但非水溶液中反应,若有水参加或生成,则此时水的浓度不可视为常数,应写进平衡常数表达式中。 例如: C2H5OH + CH3COOH CH3COOC2H5 + H2O

Kc =

[CH 3 COOC2 H 5 ][ H 2 O] [C 2 H 5 OH ][CH 3 COOH ]

(3)同一化学反应,化学反应方程式写法不同,其平衡常数表达式及数值亦不同。例如: N2O4(g) 2NO2(g) K(373) =

[ NO2 ] 2 = 0.36 [ N 2 O4 ]
[ NO2 ] [ N 2 O4 ]1 / 2
= 0.36 = 0.60

1 N2O4(g) 2

2NO2(g)

K '(373 ) =

2NO2(g)

N2O4(g)

K "373 ) = (

[ N 2 O4 ] [ NO2 ]
2

=

1 = 2.8 0.36

因此书写平衡常数表达式及数值,要与化学反应方程式相对应,否则意义就不明确。 平衡常数是表明化学反应进行的最大程度(即反应限度)的特征值。平衡常数愈大,表示反应进行愈 完全。虽然转化率也能表示反应进行的限度,但转化率不仅与温度条件有关,而且与起始条件有关。如表 7-2,实验序号①N2O4 的转化率为 0%;实验序号③N2O4 转化率为 30%。若有几种反应物的化学反应,对 不同反应物,其转化率也可能不同。而平衡常数则能表示一定温度下各种起始条件下,反应进行的限度。 (三)标准平衡常数和等温方程式 1、标准平衡常数: 等温等压下,对理想气体反应:

dD+eE

f F+h H

设 p D 、 p E 、 p F 、 p H 分别为 D、E、F、H 的平衡分压,则有:
? pF ? ? pH ? ? ? ? p0 ? ?? p0 ? ? ? = ? p D ?d ? p E ? ? ? ? p0 ? ?? p0 ? ? ?
f

K0 p

?h ? ? ? ?e ? ? ?

(7-22)

式中 K 0 称理想气体的热力学平衡常数——标准平衡常数。 p
0 标准吉布斯自由能增量 ? r G m(反应物和生成物 p 都等于 p 0 时, 热力学可以证明, 气相反应达平衡时,

进行一个单位化学反应时的吉布斯自由能增量)与 K 0 应有如下关系: p

0 ? r G m = – RT ln K 0 p

(7-23)

0 0 (7-23)式说明,对于给定反应, K 0 与 ? r G m 和 T 有关。当温度指定时, ? r G m 只与标准态有关,与 p

其他浓度或分压条件无关,它是一个定值。因此,定温下 K 0 必定是定值。即 K 0 仅是温度的函数。 p p 2、化学反应的等温方程式 如果化学反应尚未达到平衡,体系将发生化学变化,反应自发地往哪个方向进行呢?由化学等温方程 式即可判断。 等温等压下,理想气体反应:

dD+eE

f F+h H

' ' ' , 气体的任意分压为 p D 、 p E 、 p F 、 p H 时:

0 Gm, D ? Gm , D ? RT ln

?

pD ' p
?

?



0 Gm, E ? Gm , E ? RT ln

?

pE ' p?
pH ' p?

0 G m, F ? G m , F ? RT ln

?

pF ' p



0 G m, H ? G m , H ? RT ln

?

此时若反应自左至右进行了一个单位的化学反应(无限大量的体系中) ,则
? p F ' ? ? p H ' ?h ? ? ? ? ? p0 ? ?? p0 ? ? ? ? ? + RT ln d ? p E ' ?e ? pD ' ? ? ? ? ? ? p0 ? ?? p0 ? ? ? ? ?
?

f

0 ? Δ r Gm =Δ r Gm m

?



? p F ' ? ? p H ' ?h ? ? ? ? ? p0 ? ?? p0 ? ? ? ? ? QP ? d ? p E ' ?e ? pD ' ? ? ? ? ? ? p0 ? ?? p0 ? ? ? ? ?

f



? Δ r Gm =Δ r G 0 + RT ln QP m

= – RT ln K 0 + RT ln QP p (7-24)式称作化学反应的等温方程式。式中 QP 称作压力商。 若 K 0 > QP ,则Δ r Gm <0,反应正向自发进行; ? p 若 K 0 = QP ,则Δ r Gm = 0,体系已处于平衡状态; ? p 若 K 0 < QP ,则Δ r G? > 0,反应正向不能自发进行(逆向自发) 。 m p

(7-24)

注:1、对溶液中进行的反应:
? Δ r Gm =Δ r G 0 + RT ln Qc m

0 = – RT ln K c + RT ln Qc

(7-25)

? cF ? ? cH ? 0 ? ?? 0 K c0 = ? c ? ? c ? c D ?d ? c E ? 0 ? ?? 0 ?c ? ?c

f

?h ? ? ?e ? ?



? c F ' ? ? c H ' ?h ? 0 ? ?? 0 ? Qc = ? c ? ? c ? ? c D ' ? d ? c E ' ?e ? 0 ? ?? 0 ? ?c ? ?c ?

f

0 c ——平衡浓度; c ' ——任意浓度; K c ——热力学平衡常数(标准平衡常数) Qc ——浓度商。 c 0 。

称作标准浓度。即在标准状态下,c = 1mol.dm-3。 2、纯固体或纯液体与气体间的反应(复相反应) 例如,下列反应: CaCO3 (s) ? CaO(s) ? CO2 ( g ) 是一个多相反应,其中包含两个不同的纯固体和一 个纯气体。化学平衡条件 ? r Gm ? 0 ,适用于任何化学平衡,不是论是均相的,还是多相的。

?rGm ? ? RT ln

pCO2 p0

?

又因为

? ?rGm ? ?RT ln K c

所以

Kc ?

pCO2 p0

? ?

K p , K p = pCO2

式中 pCO2 ( g ) 是平衡反应体系中 CO2 气体的压力, CO2 的平衡分压。 即 这就是说, 在一定温度下, CaCO3(s) 上面的 CO2 的平衡压力是恒定的,这个压力又称为 CaCO3(s)的“分解压” 。 注意:纯固体的“分解压”并不时刻都等于 K p ,例如反应:

1 1 1 CaCO 3? S ? ? CaO ? S ? ? CO2 ? g ? 2 2 2
1 2 K p ? p CO2 ,

而“分解压” ? pCO 2

若分解气体产物不止一种,分解平衡时气体产物的总压称作“分解压” 例如: 。

NH 4 HS (s) ? NH3 ?g ? ? H 2 S ?g ? , 由纯 NH 4 HS ( s) 分解平衡时, p NH 3 ? p H 2 S 称作 NH 4 HS?s ? 的 “分解压” 。

?

?

K p ? p NH 3 ? p H 2 S

p2 ? p? ?? ? ? 4 ?2?

2

K0 ? p

p2 0 p 4

? ?

?2

结论:对纯固体或纯液体与气体间的多相反应

K c0 ? K 0 ? K p p o p

? ?

? ??

(7-26)

(四)平衡常数的测定和平衡转化率的计算 1、平衡常数的测定: 测定平衡常数实际上是测定平衡体系中各物质的浓度(确切地说是活度)或压力。视具体情况可以采

用物理或化学的方法。 (1)物理方法:测定与浓度有关的物理量。如压力、体积、折射率、电导率等。 优点:不会扰乱体系的平衡状态。 缺点:必须首先确定物理量与浓度的依赖关系。 (2)化学方法:利用化学分析的方法直接测定平衡体系中各物质的浓度。 缺点:加入试剂往往会扰乱平衡,所以分析前首先必须使平衡“冻结” 。通常采取的方式是:骤然冷 却,取出催化剂或加入阻化剂等。 2、平衡转化率的计算: (1)平衡转化率(亦称理论转化率或最高转化率) 平衡转化率 ?
原料达平衡后转化为产 品的量 ? 100% 投入原料的总量

平衡转化率是以原料的消耗来衡量反应的限度 注意:实际转化率≤平衡转化率(工厂通常说的转化率为实际转化率) (2)平衡产率(最大产率)—— 以产品来衡量反应的限度 平衡产率 ?
平衡时主要产品的产量 ? 100% 原料按化学反应方程式 全部变为主要产品时的 产量

(产率通常用在多方向的反应中,即有副反应的反应) 有副反应时,产率 < 转化率 (五)外界因素对化学平衡的影响 1、浓度对平衡的影响 对于一个已达平衡的化学反应, 若增加反应物浓度, 会使 Q( QP 或 Qc ) 的数值因其分母增大而减小,
0 而 K 0 ( K 0 或 K c )却不随浓度改变而发生变化,于是 Q< K 0 ,使原平衡破坏,反应正向进行。随着反 p

应的进行,生成物浓度增大,反应物浓减小,Q 值增大,直到 Q 增大到与 K 0 再次相等,达到新的平衡为 止。对于改变浓度的其他情况,亦可作类似分析。结论概括如下:在其他条件不变的情况下,增加反应物 浓度或减少生成物浓度,平衡向正反应方向移动;增加生成物浓度或减少反应物浓度,平衡向着逆反应方 向移动。 2、压力对平衡的影响 体系(总)压力的变化对没有气体参加或生成的反应影响很小。对于有气体参见且反应前后气体物质 计量数有变化的反应,压力变化对平衡有影响。例如合成氨反应 N2(g) + 3H2(g) 在某温度下达到平衡时有: 2NH3(g)

K0 p

=

( p NH 3 / p 0 ) 2 ( p N 2 / p 0 )( p H 2 / p 0 ) 3

如果将体系的容积减少一半,使体系的总压力增加至 原来的 2 倍,这时各组分的分压分别为原来的 2 倍,反应商为:

QP =


(2 p NH 3 / p 0 ) 2 (2 p N 2 / p )( 2 p H 2 / p )
0 0 3

=

1 0 Kp 4

QP < K 0 p

原平衡破坏,反应正向进行。随着反应进行, p N 2 、 p H 2 不断下降, p NH 3 不断增大,使 QP 值增大, 直到 QP 再次与 K 相等,达到新的平衡为止。可见,增大体系总压力平衡向着批体计量数减小的方向移动。 类似分析,可得如下结论:在等温下,增大总压力,平衡向气体计量数减小的方向移动;减小总压力, 平衡向气体计量数增加的方向移动。如果反应前后气体计量数相等,则压力的变化不会使平衡发生移动。 3、温度对平衡的影响 温度的改变对于反应商没有影响,却可以改变平衡常数。
0 0 0 0 由 ? r G m = – RT ln K 0 和 ? r G m = ? r H m -T ? r S m 得 0 0 – RT ln K 0 = ? r H m -T ? r S m
0 0 ?r H m ?r Sm ? RT R

ln K 0 = –

(7-27)

此式说明了平衡常数与温度的关系,称为范特荷甫方程式。设 T1 时,标准平衡常数为 K 10 ,T2 时,标
0 准平衡常数为 K 2 ,且 T2>T1,有
0 ? r H m,1 0 ? r S m,1

ln K10 = –

RT1
0 ? r H m, 2

?

R
0 ? r S m, 2

0 ln K 2 =



RT2

?

R

0 0 当温度变化范围不大时,视 ? r H m 和 ? r S m 不随温度而改变。上两式相减,有

ln

0 K2

K10

=–

0 ?r Hm R

? T2 ? T1 ? ? ? T ?T ? ? ? 1 2 ?

(7-28)

根据(7-28)式可以说明温度对平衡的影响。设某反应在温度 T1 时达到平衡,有 Q = K 10 。当升温至
0 0 0 T2 时:若该反应为吸热反应, ? r H m >0,由(7-28)式得知 K 2 > K 10 ,则 Q< K 2 ,所以平衡沿正反应方 0 0 0 向移动;若该反应为放热反应, ? r H m <0,由(7-28)式得知 K 2 < K 10 ,则 Q > K 2 ,所以平衡沿逆反

应方向移动。总之,升温使平衡向吸热方向移动。反之,降温使平衡向放热方向移动。 各种外界条件对化学平衡的影响, 均符合里· 查德里概括的一条普遍规律: 如果对平衡体系施加外力, 平衡将沿着减少此外力影响的方向移动。这就是里·查德里原理。

【典型例题】 例 1、把 6 mol A 气和 5 mol B 气混合后放入 4 L 密闭容器中,在一定条件下发生反应: 3 A(g) + B(g) 2C(g) + x D(g),经 5 min 生成 C 为 2 mol,测定 D 的平均速率为 0.1 mol·L-1min-1。求:

(1)A 的平均反应速率; (2)此时 A 的浓度; (3)温度不变,体积不变,容器内压强与开始时压强比值; (4)B 的转化率。 分析:不同物质表示同一反应的反应速率,其比值等于方程式中各物质的化学计量数之比。同温、同 体积时,气体的压强之比等于气体的物质的量之比。转化率则为转化的量与起始量之比值。 解:经 5 min 生成 D 的物质的量:n(D) = 0.1 mol·L-1min-1×4 L × 5min = 2 mol, 3 A(g) + B(g) 起始物质的量/mol 转化物质的量/mol 5 min 后物质的量/mol (1) ? (A) = (2)C(A) = 6 3 3 5 1 4 2C(g) + x D(g) 0 2 2 0 2 2

3mol = 0.15 mol·L-1·min-1 4 L·m in 5
3mol = 0.75mol·L-1 4L

(3)容器内压强 p1 与开始压强 p0 之比为: (4)B 的转化率 =

p1 1 (3 ? 4 ? 2 ? 2)mol = = 1 (6 ? 5)mol p0

1mol ? 100% = 20% 5mol

例 2、N2O5 分解反应的实验数据如下: 时间/min 浓度/mol·L-1 0 0.160 1 0.113 2 0.080 3 0.056 4 0.040

(1)计算 1 min 到 3 min 的平均速率; (2)用浓度对时间作图,求 2 min 时的瞬时速率。 分析:平均速率根据 1 min 到 3 min 的浓度的变化值即可求得。2 min 时的瞬时速率要用浓度对时间作 图得 c– t 曲线,在曲线上 2 min 时的这一点作切线,其斜率之负值即为此时的瞬时速率。 解: (1) ? ( N2O5) =

? (0.056 ? 0.113)mol· L ??C ( N 2O5 ) = ≈ 0.029 mol·L-1·min-1 ?t (3 ? 1 min )

(2)用浓度对时间作图得 c– t 曲线,如图所示: 0.160
斜率=

N2O5 浓度/mol/L

?0.056 = -0.028 2.0

0.120

0.080

反应进行 2 分钟时,曲线的斜率等于-0.028 mol·L-1·min-1。因此,这时的反应速率为:
? (N2O5) = -(-0.028 mol·L ·min )= 0.028mol·L ·min 。
-1 -1 -1 -1

例 3、制备光气的反应按下式进行:CO + Cl2 = COCl2 实验测得下列数据: 实验顺序 CO 1 2 3 4 0.100 0.100 0.050 0.050 初浓度/mol·L-1 Cl2 0.100 0.050 0.10 0.050 1.2×10-2 4.26×10-3 6.0×10-3 2.13×10-3 初速率/mol·L-1·s-1

求该反应的速率常数、反应级数和速率方程。 分析:设速率方程为 ? = k·c m (CO)·c n (Cl2)。m、n 的求算可分别保持 Cl2、CO 的浓度不变,再根据 Cl2、CO 的对应浓度和速率而求得。求得 m、n 后代入具体数据即可得 k,速率方程的具体表达式也就确定 了。 解: (1)求反应级数 反应速率方程为 ? = k·c m (CO)·c n (Cl2)。首先用实验 1、2 的数据,即保持 CO 浓度不变,而使 Cl2 的浓度由 0.100 mol·L-1 变为 0.050 mol·L-1,相应的初速率由 1.2×10-2 mol·L-1·s-1 变为 4.26×10-3 mol·L-1·s-1。根据速率方程:
? 1 = k·c (CO)·c n (Cl2) 2 ? 2 = k·c (CO)·c n (Cl2) 2
m m

?1 C1n (Cl 2 ) = n ?2 C2 (Cl 2 )
lg

两边取对数并移项:n =
lg

?1 ?2

C1 (Cl 2 ) C2 (Cl 2 )

lg
代入实验数据:n =

1.2 ? 10?21 4.26 ? 10?3 0.10 lg 0.050
lg

=

0.45 = 1.5 0.30

同理可求出:m =
lg

? lg 1 ?3
C1 (CO ) C3 (CO )

1.2 ? 10?2 6.0 ? 10?3 0.10 lg 0.050

=

=1

故该反应对 CO 为一级反应,对 Cl2 为 3/2 级反应,总反应级数为 2.5 级。 (2)求速率常数 k=

?
C (CO)· 3 /(Cl2) C 2

=

1.2 ? 10?2 mol·?1·?1 L s = 3.8(L·mol-1)3/2·s-1 ?1 0.10mol· ? 0.10mol·?1)/ 2 L ( L 3

求速率方程 该反应速率方程式为 ? = k·C(CO)·C3/2(Cl2)

例 4、338 K 时 N2O5 气相分解的速率常数为 0.29 min-1,活化能为 103.3 kJ·mol 1,求 353 K 时的速率 常数 k 及半衰期 t1/2。 分析:由阿累尼乌斯公式 ln
E 1 k2 1 = a( ? )可求得 353 K 时的速率常数 k。另外,由速率常数的 R T1 T2 k1



单位为 min-1, 可知该反应为一级反应, 代入一级反应的半衰期公式 t1/2 = 解: (1)求 353K 时的速率常数 T1 = 383 K,k1 = 0.292 min-1。Ea = 103.3 kJmol-1,T2 = 353 K。 根据公式 ln
E 1 k2 1 = a( ? )代入实验数值: R T1 T2 k1

0.693 可求得该温度下的半衰期。 k

ln

k2 1 1 103.3 ? 103 ? = ( ) 0.292 338 353 8.314

k2 = 1.392 min-1。 (2)求 353 K 时的 t1/2 根据公式 t1/2 =
0.693 代入 k2 具体值得 k

t1/2 =

0.693 1.392 min?1

= 0.4978 min。

例 5、反应 2NO(g) + H2(g) → N2(g) + 2H2O(g)的速率表达式为: ? = kc 2 c H 2 NO 试讨论下列条件变化时对初始速率有何影响? (1)NO 的浓度增加 1 倍; (2)有催化剂参加; (3)温度降低; (4)反应容器的体积增大 1 倍。 分析:本题告诉反应的质量作用定律,要求讨论在不同条件下反应初始速率的变化情况。对于(1) 和(4)直接使用质量作用定律就可以得出结论;对于(2)和(3)则要根据我们前面讲述的一些情况来 考虑。正催化剂加速反应,负催化剂减慢反应,一般来说,升高温度加快反应速率,降低温度减慢反应速 率。本题的难度在于对于“初始速率”的理解。我们说化学反应速率和反应物的浓度有关,随着反应的进 行,反应物浓度在不断第变化,那么反应的速率也在发生变化,所以不同瞬间,化学反应的速率都是不同 的。 “初始速率”就是指反应开始这一瞬间反应的速率。 解: (1)当 c NO 增加 1 倍时,根据 ? = kc 2 c H 2 ,反应速率将增加 4 倍; NO (2)正催化剂加快反应速率,负催化剂则减慢反应速率; (3)温度降低,反应速率降低; (4)当反应容器的体积增大 1 倍时,c NO 和 c H 2 都减小 1 倍,所以据 ? = kc 2 c H 2 ,反应速率将减慢 NO 8 倍。

例 6、在一定温度和压力下,某一定量的 PCl5 气体的体积为 1 L,此时 PCl5 气体已有 50%离解为 PCl3 和 Cl2,试判断在下列情况下,PCl5 的离解度是增大还是减小? (1)减小压力使 PCl5 的体积变为 2 L; (2)保持压力不变,加入氮气使体积增至 2 L; (3)保持体积不变,加入氮气使压力增加 1 倍; (4)保持压力不变,加入氯气,使体积变为 2 L; (5)保持体积不变,加入氯气,使压力增加 1 倍。 分析:判断 PCl5 离解度的增减,实质上是判断平衡 PCl5(g) PCl3(g)+ Cl2 在不同条件下的移

动方向,若平衡向右移动,PCl5 的离解度增大;若平衡向左移动,PCl5 的离解度减小。 判断平衡移动的方向,首先要知道现在平衡的平衡常数,并要计算不同条件下的浓度商 QC(在此应 为压力商 QP) ,比较 QP 和压力常数 KP 的关系进行判断。若 QP = KP 时,平衡不移动,若 QP < KP 时,平 衡右移,若 QP > KP 时,平衡左移。 解:PCl5(g) PCl3(g)+ Cl2(g)

已知 50%的 PCl5 分解,所以在平衡时,PCl5、PCl3、Cl2 的平衡分压相等,设为 p。

则平衡常数 KP =

p PCl2 · Cl3 p p PCl5

=

p· p =p p

(1)体积增大了 1 倍,各物质的分压均减小 1 倍,所以此时

QP =

p PC3 · Cl2 p p PCl5

1 1 p· p 1 2 2 = = p < KP 2 1 p 2

故平衡向右移动,PCl5 的离解度增大。 (2)加入氮气,氮气虽然不参加反应,但它使体系的体积增大 1 倍,因而使 PCl5、PCl3 和 Cl2 的分压 均减小 1 倍,所以结果同(1) 。 (3)加入氮气,虽然使压力增加 1 倍,但由于体积未变,因此 PCl5、PCl3 和 Cl2 的分压不变,化学平 衡不移动,所以 PCl5 的离解度不变。 (4)加入氯气,使体积变为 2 L,总的压力不变,仍为 3p,但各物质的分压为: p PCl5 = p PCl3 =
1 p 2

p Cl2 = 3p - p PCl5 - p PCl3 = 3p - p = 2p

QP =

p PC3 · Cl2 p p PCl5

2p?
=

1 p 2 = 2p > KP 1 p 2

所以平衡向左移动,使 PCl5 的离解度减小。 (5)体积不变增加氯气使压力增加 1 倍,此时的总压力为 2×3p = 6p,各物质的分压为: p PCl5 = p PCl3 = p p Cl2 = 6p - p- p = 4p

QP =

p PC3 · Cl2 p p PCl5

=

p ? 4p = 4p > KP p

平衡向左移动,减小了 PCl5 的离解度。


例 7、已知反应 N2(g) + 3H2(g)

2NH3(g) 在 400 K 下的 K P = 55 atm 2,请把 K P 换算成 K c 。

分析:根据 K P = K c (RT) ? ?? 给出的 K P 和 K c 的关系,但要注意取正确的单位。 解:K P = K c (RT) ? ?? Kc = KP × (RT) ?? = 55 atm 2×(0.8206 L atm / mol K × 400 K)2 = 5.9 × 104 mol 2· L2
- -

例 8、已知在 25℃下: 反应 1:2HCl(g) 反应 2:I2(g) + Cl2(g) H2(g) +Cl2(g) 2ICl(g) K1 = 4.2×10
-34

K2= 2.1×105 2ICl(g) + H2(g) 的平衡常数 K3。

求同温度下,反应 3:2HCl(g) + I2(g)

分析:反应 3 可以看成是反应 1 和 2 的加和,即当反应 1 和 2 同时发生,就得到反应 3,反应 1 产生 的氯气在反应 2 里被当作反应物,如同催化剂的作用。因此同时发生的反应 1 和 2 也可以说是连续反应而 得到反应 3。因此 K3 必定可从 K1 和 K2 求得。让我们来考察 K1 和 K2 的表达式:K1 =
2 c ICl c I 2 ? cCl2

c H 2 ? cCl 2
2 c HCl



K2

=

c Cl 2 在 K1 式的分子上、在 K2 式的分母上,若 K1 和 K2 相乘就可以消去。剩下的各物质的浓度正好是
K3 的表达式。 解:K1 K2 =
2 c H 2 ? c Cl 2 ? c ICl 2 c HCl ? c I 2 ? c Cl 2

= K3

因此

K3 = K1·K2

例 9、在高温下,CO2 在炽热的碳上还原成 CO: C(s) + CO2(g) 2CO(g) KP = 1.90 atm

问反应在 2.00 atm 下达成平衡时,CO 和 CO2 的分压各是多少? 分析:此题有两个未知数:CO 和 CO2 的平衡分压,需要有两个独立方程才能得解。反应在 2.00 atm 下达成平衡的意思是平衡分压的和等于 2.00 atm。因此,第 1 个方程是 pCO + pCO 2 = 2 atm;另一个方程则 是平衡常数表达式。 解:设 CO 和 CO2 的平衡分压分别为 pCO 和 pCO 2 , pCO + pCO 2 = 2 atm KP =

( pCO ) 2 = 1.90 atm pCO2

( pCO ) 2 atm = 1.90 atm 2.00 ? pCO

∴pCO = 1.22 atm(一元二次方程的另一解:-3.12 弃去) pCO 2 = 0.78 atm

例 10、 773K 时, 2.00 mol SO2 和 3.00 mol O2 充入容积为 10.00 dm3 的密封容器中, 将 平衡时有 1.90 mol SO3 生成。计算反应:2SO2(g) + O2(g) 2SO3(g) 的 K c 、 K p 以及 SO2 的转化率。

分析:解此类题的关键是求出平衡时各物质的平衡浓度(或平衡分压) 。反应时各物质的量变化之比,

即为方程式中各物质的计量数之比。据此,根据起始浓度(或分压)即可求得各物质的平衡浓度(或平衡 分压) 。 解:根据题意,此反应是在等温等容条件下进行的。 2SO2 (g) 起始浓度/ mol·dm–3 变化浓度/ mol·dm–3 2.00/10 – 1.90/10 – + O2 (g) 3.00/10 2SO3 (g) 0 +1.90/10

平衡浓度/ mol·dm–3

(2.00 ? 1.90) 10

1 × 1.90/10 2 1 (3.00 ? ? 1.90) 2 10

1.90 10

Kc

(0.190) 2 = (0.010) 2 ? 0.205 = 1.8 ×103 dm3·mol

K p = K c (RT) ? ?? = 1.8 × 103 dm3·mol–1(8.31k Pa·dm3·mol–1·K–1×773K)2–3
SO2 的转化率 = 2.00 ? 100% = 95.0 % 例 11、已知 N2O4(g) 体系中反应的方向。 (1)N2O4 与 NO2 含量为 1︰3(物质的量之比)的气体混合物; (2)N2O4 与 NO2 含量等于 4︰1 的气体混合物。 分析:只有在达到平衡时,平衡浓度之间的关系才具有平衡常数的数值,因此,对比 QP 和 KP 就可得 知反应所处的热力学状态。 解: (1)该体系内 N2O4 与 NO2 的分压分别为
2

1.90

2NO2 (g),在 25℃的平衡常数 K P = 0.14。判断总压为 101.325 kPa 时下列

?

1 3 ? 101.325kPa 和 ? 101.325kPa 时, 4 4

? p NO2 ? ? ? 101.325 ? ? ? ? 0 ? ?4 ? p ? ? 101.325 ? ? ? ? ? ? =2.25 QP ? =? ? ? p N 2 O4 ? ? 0 ? ?1 ? p ? ? ? 101.325 ? ? ? ? ?4 ?
3 ? 101.325 ? ? ? ? ?

2

? QP > K P ,反应逆向进行。

(2)当体系内 N2O4 与 NO2 的分压分别为

4 1 ? 101.325kPa 和 ? 101.325kPa 时, 5 5

?1 ? ? ? 101.325 ? ? p NO2 ? ?5 ? ? ? ? p0 ? ? 101.325 ? ? ? ? ? ? =0.05 QP ? ?? ? p N 2 O4 ? ? 4 ? ? ? ? p 0 ? ? 5 ? 101.325 ? ? ? ? ? ? 101.325 ? ? ? ? ?
2
? QP < K P ,反应正向进行。

2

例 12、碳酸钙在密闭容器中加热分解产生氧化钙和二氧化碳并达到平衡: CaCO3(s) 已知 298K 时的数据如下: 物质
? ? f H m (kJ .mol ?1 )

CaO(s)+CO2(g)

CaCO3(s) 1206.9

CaO(s) -635.6

CO2(g) -393.5

? ? f Gm (kJ .mol ?1 )

-1128.8

-604.2

-394.4

求 298K 时分解反应的 K p 和分解压。在石灰窑中欲使 CaCO3(s)以一定的速度分解,CO2 的分压应不 低于 101325 Pa,试计算石灰窑温至少维持在多少度?(假设此反应的 ?C P ? 0 ) , 解:对 CaCO3(s)的分解反应:CaCO3(s) CaO(s)+CO2(g) p= ,K

p CO 2 p?

,即反应的平衡常

数是平衡时 CO2(g)的分压与标准压力之比。
? ? ? ? 298K 时, ? r H m ? ? f H m,CaO + ? f H m,CO2 - ? f H m,CaCO3 =-635.6-393.5+1206.9 =177.8 (kJ .mol ?1 )

? ? ? ? ? r Gm ? ? f Gm,CaO ? ? f Gm,CO2 ? ? f Gm,CaCO3 = – 604.2 -394.4+1128.8 =130.2 (kJ .mol ?1 )
? ? r Gm, 298

? K P , 298 ? exp(?

RT

) ? exp(?

130200 ) ? 1.5 ? 10?23 8.314 ? 298

分解压 = 1.5 ×10–23×101325 = 1.52×10–18 Pa 设 CO2 的分压应不低于 101325Pa 时 ,石灰窑温至少维持在 T K,
? K P ,T ?

pCO p
?

?

101325 ? ? 1, 101325

由 等压方程式:
? ? ? H m为常数时, ln ? K P, 2 ? K P, 1

?

? ?r H m ? 1 1 ? ? ? ? ,即 R ? T1 T2 ? ? ?

ln

1 177800 ? 1 1 ? ? ? ?23 ? 298 T 8.314 ? 1.5 ? 10

? ? ? ?

T = 1113 K

【知能训练】 1、高炉炼铁的基本反应之一如下: FeO(s)+ CO(g) (1)则该反应中平衡常数 K = Fe(s)+ CO2(g) △H>0 。

(2)已知 1100℃时,K = 0.263,温度升高,化学平衡移动后达到新的平衡,高炉内 CO2 和 CO 的体 积比值 ,平衡常数 K 值 (填“增大”“减小”或“不变”。 、 )
1 1

(3)1100℃时,测得高炉中[CO2]= 0.025mol·L- ,[CO]= 0.1mol·L- ,在这种情况下,该反应是否 处于平衡状态 是 (填“是”“否”,此时,化学反应速率是 ? 正 、 ) 。 2、温度对反应速率的影响可用阿伦尼乌斯公式的一种形式表示: lg k 2 ? E ?T2 ? T1 ?
k1

? 逆 (填“>”“=”“<”,其原因 、 、 )

2.303RT1T2


式中 k1、k2 分别为温度 T1、T2 时某反应的速率常数;E 为反应的活化能(单位:kJ·mol 1) (假定活化能 在温度变化范围不大时是常数) 。又对同一反应,在不同温度下反应速率常数与反应时间的关系如下:

k1 t 2 ? k 2 t1
(1)现知在 300K,鲜牛奶 5 小时后即变酸,但在 275K 的冰箱里可保存 50 小时,牛奶变酸反应的活 化能是多少? (2)若鲜牛奶存放 2.5 小时后即变酸,则此时温度为多少? 3、在水溶液中,反应 Hg 2 ? + Tl3 = 2Hg2 + Tl 的速度表达式为 ? = k[Hg 2 ? ][Tl3 ]/[Hg2 ],试推测其反 2 2
+ + + + +

应历程。 4、一定温度下,按下式发生分解反应:N2O5(g) 实验测得的数据如下表: 时间 / s c (N2O5) / mol·L
-1

2NO2(g)+1/2O2(g)

0 5.00

500 3.52

1000 2.4

1500 1.75

2000 1.23

2500 0.87

3000 0.61

(1)求各时间间隔内 N2O5 分解的平均反应速率。 (2)求 1000s 时,生成 NO2 的瞬时反应速率。 (3)若上述反应的正、逆反应速率分别为 ? 正 = kc(N2O5) 和 ? 逆 = k’c2(NO2)·c1/2(O2),试写出该反应

的平衡常数的表达式。

?? ?? 5、有化学反应:①A+B ? 1 2D ②C+G ? 2 2H,其中 E1、E2 为该反应的活化能。
E E

(1) A 、 D 分别是用物质 A、 表示反应①的化学反应速率, ? A 与 ? D 的关系为 D 则 ? ?



(2)对于反应②,若起始浓度 cC = a,cG = 2a,cH = 0,则用各物质表示的反应速率与时间的关系示意 曲线为下图中的 (填序号) 。

A

B

C

D

(3)若 E1>E2,将两反应的温度分别从 500℃升至 1000℃,则反应①的速度增加值 ?? 1 与反应②速 度的增加值 ?? 2 相比,其关系为 。

6、某抗生素在人体血液中呈现简单级数的反应,若给病人在上午 8 时注射一针抗生素,然后在不同 时刻 t 测定抗生素在血液中的浓度 c(以 mg/100cm3 表示) ,得到如下数据: t /h c /(mg/100cm3) (1)确定反应级数。 (2)求反应的速率常数 k 和半衰期 t1/2。 (3)若抗生素在血液中浓度不低于 0.37 mg /100 cm3 才有效,问大约何时该注射第二针? 7、400℃下,1L 容器内 N2、H2、NH3 三种气体的平衡浓度分别是: 2]=1.0 mol·L 1、 2]= 0.50 [N [H mol·L 1、 [NH3]= 0.50 mol·L 1。如果保持温度不变,而要使 N2 的平均浓度增加到 1.1 mol·L 从容器中取走多少摩尔的氢气才能使体系重新达到平衡? 8、 平衡常数 KC 的数值大小, 是衡量化学反应进行程度的标志。 25℃时, 在 下列反应的平衡常数如下: N2(g) + O2(g) 2H2(g) + O2(g) 2CO2 (g) 2NO(g) 2H2O(g) 2CO(g)+O2(g) K1 = 1×10
-30 - - -1 -

4 0.480

8 0.326

12 0.222

16 0.151

需要

K2 = 2×10 81 K3 = 4×10
-92

(1)常温下,NO 分解产生 O2 反应的平衡常数的表达式为 K = (2)常温下,水分解产生 O2,此时平衡常数值约为 K = 。



(3)常温下,NO,H2O,CO2 三种化合物分解放出氧气的倾向大小顺序为



(4)北京市政府要求全市对所有尾气处理装置完成改装,以求基本上除去氮氧化物、一氧化碳污染

气体的排放,而改装后的尾气处理装置主要是加入有效催化剂,你根据以上有关数据分析,仅使用催化剂 除污染气体的可能性。 9、在 900℃、101.325 kPa 下使 CO(g)和 H2(g)的混合气体通过催化剂来研究下列平衡:CO2(g)+H2(g) CO(g)+H2O(g),把反应达到平衡后的气体进行分析,得到各气体的分压分别为: pCO = 21704 Pa,
2

p H 2 = 25825 Pa, p H 2O = p CO = 26892 Pa,问各气体分压均为 2×101.325 kPa 时反应能否自发进行?
10、在 630K 时,反应 2HgO?s ? ? 2Hg?g ? ? O2 ?g ? 的标准自由能变化为 44.3kJ·mol-1。试求此反应 的 K p 及 630K 时 HgO(s)的分解压。如果此反应开始前容器中已有 101325 Pa 的 O2,求在 630 K 达平衡时 与 HgO (s) 共存的气相中 Hg(g)的分压。 11、1273K 时 H2O(g) 通过红热的铁生产 H2,发生如下反应:Fe(s) + H2O(g) 应的平衡常数 KP = 1.49(K p 是以各平衡混合气体分压表示的化学平衡常数)。 (1)计算每生产 1.00 mol 氢气需通入水蒸气的物质的量为多少? (2)1273K 时,若反应体系中只有 0.30 mol 的铁并通入 1.00 mol 水蒸气与其反应,试计算反应后各 组分的物质的量。反应后体系是否处于平衡状态,为什么? (3)1273K,当 1.00 mol 水蒸气与 0.80 mol 铁接触时,最后各组分的物质的量是多少? 12、在 298K 下,下列反应的? r H 0 依次为: m ?1H 0 = – 5512.4 kJ·mol m ?2H 0 = – 393.5 kJ·mol m ?3H 0 = – 285.8 kJ·mol m
1
-1

FeO(s)+H2(g),反

C8H18(g) + 25/2O2(g) → 8CO2(g) + 9H2O(l) C(石墨) + O2(g) → CO2(g) H2(g) + 1/2O2(g) → H2O(l)

-1

-1

正辛烷、氢气和石墨的标准熵分别为:463.7,130.6,5.694J·K- ·mol- 。 设正辛烷和氢气为理想气体,问: (1)298K 下,由单质生成 1mol 正辛烷的反应的平衡常数 K p ,给出计算过程。 (2)增加压力对提高正辛烷的产率是否有利?为什么? (3)升高温度对提高产率是否有利?为什么? (4)若在 298 K 及 101.325 kPa 下进行,平衡混合物中正辛烷的摩尔分数能否达到 0.1? (5)若希望正辛烷在平衡混合物中的摩尔分数达到 0.5,则在 298K 时,需要多大的压力才行?给出 计算过程。
0

1

参考答案: 1、 (1)[CO2]/[CO] (2)增大 增大,[CO]减小,即 ? 正 将大于 ? 逆 。 2、 (1)63.19 kJ·mol 3、Hg 2 ? 2
-1

增大 (3)否



[CO2]/[CO]<0.263,碳元素守恒,故[CO2]

(2)308.5 K


Hg + Hg2 (快) Hg + Tl3
- -



Hg2 + Tl (慢)
- - - -





4、 (1)2.96×10 3,2.24×10 3,1.30×10 3,1.04×10 3,0.72×10 3,0.52×10 3(单位:mol·L
1



·s 1) (2)3.52×10 3mol·L 1·s 5(1) ? A = 1/2 ? D







-1

(3)c2(NO2)·c1/2(O2) / c(N2O5) = k / k’

(2)D (3) ?? 1 > ?? 2

6、 (1)以 lnc 对 t 作图得一直线,说明该反应是一级反应。 (2)k = 0.09629 h (3)6.7 h 7、0.46 mol 8、 (1)K=
-1

t1/2 = ln2/k = 7.198 h

c N 2 c O2
2 c NO

(2)5×10

-82

(3)NO>H2O>CO2

(4)NO、CO 与 O2 反应进行的程度很大,使用合适的催化剂加快反应速率,在水蒸气存在下生成 HNO3 和 CO2,则基本上可以除去污染气体。 或由第 1,3 个反应及平衡常数可知 2CO + 2NO=2CO2 + N2 的 K = 1/K1K2 = 2.5×10121,使用合适的催化剂加快反应速率,基本上可以除去污染气体。
? (1)根据平衡常数定义,可利用 900℃时各气体的平衡分压计算平衡常数 K P 。 9、

? p CO ? ? p H 2O ? 2 ? ? ? ? ? 26892 ? ? p0 ??? p0 ? ? ? ? ? ? ? ? ? 101325? = =1.29 KP = ? p CO2 ? ? p H 2 ? ? 21704 ? ? 25825 ? ? ? ? ? ? p 0 ? ? ? p 0 ? ? 101325? ? ? 101325? ? ? ? ? ? ? ? ?
(2)根据化学反应恒温方程式判断过程能否自发进行。 Δ rG? = – RT ln K P + RT ln QP m
?

? 2 ? 101325 ? ? 2 ? 101325 ? ? ??? ? ? 101325 ? ? 101325 ? = – 8.314×1173 ln1.29+8.314×1173 ln ? 2 ? 101325 ? ? 2 ? 101325 ? ? ??? ? ? 101325 ? ? 101325 ?
-1 = – 8.314×1173 ln1.29+8.314×1173 ln1 = – 2483(J.mol )



? QP = 1< K P = 1.29

表明反应能自发向右进行。

10、因为 所以

? ? ? ?rGm ? ?RT ln Ka ? ?RT ln K P
? ln K P ? ? ? ?rGm 44.3 ? 103 ?? ? ?8.4 5 8 RT 8.3 1 4 6 3 0 ?

? K P ? 2.123?10?4

? ? K 0 ? K P ? p0 ? ? ? p ? ?

? ??

? ? ? K P ? p 0 ? ? 2.123 ? 10 ?4 ? 1013253 ? 2.209 ? 1011 Pa 3 ? ? ? ?

3

设 630K 反应达平衡时 O2 的分压为 p,则 K 0 ? ?2 p? p ? 4 p 3 ? 2.209 ? 1011 Pa 3 p
2

p =3808 Pa,故 HgO(s)的分解压为:p +2p =11424 Pa 如反应前容器中已有 101325pa 的 O2(g) ,设达平衡时,Hg(g)的分压为 p1,则

1 ? ? K P ? p12 ? ?101325? p1 ? ? 2.209? 1011 2 ? ? 1 设 Pa 101325 ? p1 ? 101325 Pa, 2
2 则 101325p1 ? 2.209 ?1011

p1 ? 1476.5 Pa

即平衡时,Hg(g)的分压约为 1476.5 Pa 11、 (1)反应为 Fe(s) + H2O(g) = FeO(s) + H2(g) Kp = p(H2)/ p(H2O) =1.49 因为 p(H2) = n (H2)RT / V p(H2O) = n (H2O)RT / V

所以 Kp = p(H2)/ p(H2O) = n(H2)/ n(H2O) = 1.49 当气相中 n (H2) = 1mol 时, 气相中还应有 1/1.49 即 0.67 mol 的 H2O(g)存在以维持平衡, 故需通入 1.67 mol 的 H2O(g) 才能产生 1mol H2(g)。 (2)当 1.00 mol H2O(g) 与 0.30 mol Fe 反应时,将生成 0.30 mol H2(g),用于平衡的 n(H2O) = 0.30/1.49 = 0.20 mol 所以当 0.30 mol Fe 完全反应时共需 0.30 + 0.20 = 0.5 mol H2O(g) ,现有 1.00 mol H2O(g) ,故 Fe 可 完全反应。此时体系组成为: H2(g):0.30 mol;H2O(g):0.70 mol;FeO(s)︰0.30 mol;Fe:已不存在。 由于铁已全部反应完,体系未达化学平衡,气相中 p(H2)/ p(H2O) = 0.30/0.70 = 0.43 仅表示反应结束 时它们的分压比。 (3)当体系中有 0.80 mol Fe 时,加入 1.00 mo1 H2O(g) 后,显然不可能使铁全部反应,设有 x mol Fe 起反应,应当消耗 x mol H2O(g),同时生成 x mol H2(g),故有 x +(x /1.49)= 1 解得 x = 0.60 mol

即有 0.60 mol 的 Fe 反应生成 0.6 mol 的 FeO(s)。所以此时体系的组成为 H2(g):0.60 mol;H2O(s):0.40 mol;FeO(s):0.60 mol;Fe:0.20 mol。 12、 (1)将 8×式(2) + 9×式(3)-式(1) 得:8C(石墨) + 9H2(g) → C8H18(g) ? r H 0 = 8?2H 0 + 9?3H 0 -?1H 0 = – 207.8 kJ·mol–1 m m m m

? r S 0 = ??BS 0 (B) = – 757.252J·K 1·mol m m


-1

? r G 0 = ? r H 0 -T×? r S 0 = 17.861kJ·mol–1 m m m

K 0 = exp(– ? r G 0 /RT) = 7.36×10 m p
(2) K X = K 0 (p/ p 0 ) p 有利于正辛烷的生成。
-??

-4

,?? = – 8 。当压力不高时, K 0 为常数, K X 随总压的增加而增大,故 p

(3)? r H 0 < 0, K 0 随温度升高而减小,升高温度不利于正辛烷的生成。 m p (4)若 X (C8H18) = 0.1,则 Qp = [p(C8H18)/ p 0 ]/[p(H2)/ p 0 ]9 = 0.258 故 X(C8H18)不能达到 0.1。 (5)若使 X(C8H18) = 0.5,
- - K 0 = K X (p/ p 0 ) 8 = 7.36×10 4 p - K 0 = 7.36×10 4 p

求得 p = 499 kPa


高中化学奥林匹克竞赛辅导讲座 第7讲 化学反应速率与化学平衡

高中化学奥林匹克竞赛辅导讲座 第7讲 化学反应速率与化学平衡 隐藏>> 高中化学奥林匹克竞赛辅导讲座 第 7 讲 化学反应速率与化学平衡【竞赛要求】 反应速率基本概...

高中化学奥林匹克竞赛专题练习:专题七 化学反应速率与化学平衡

高中化学奥林匹克竞赛专题练习:专题七 化学反应速率与化学平衡_高三理化生_理化生_高中教育_教育专区。华仔出品 专题七 化学反应速率与化学平衡 学号 姓名 得分 1、...

第7讲 化学反应速率与化学平衡

高中化学奥林匹克竞赛辅导... 31页 免费 专题1第7讲 化学反应速率与... 10...·版权所有·盗版必究· 第1讲【要求】 化学反应速率与化学平衡 反应速率基本...

2013年北京市一零一中学高中化学竞赛+第7讲+化学反应速率与化学平衡

2013年北京市一零一中学高中化学竞赛+第7讲+化学反应速率与化学平衡_学科竞赛_高中教育_教育专区。第7讲 化学反应速率与化学平衡竞赛要求】 反应速率基本概念。...

第7讲 化学反应速率与化学平衡

第7讲 化学反应速率与化学平衡_化学_自然科学_专业资料。第7讲 化学反应速率与...高中化学奥林匹克竞赛辅... 31页 免费 第10讲 化学反应速率 化... 74页 免...

2016高考化学二轮专题复习提升训练 上篇 专题一 第7讲 化学反应速率和化学平衡

2016高考化学二轮专题复习提升训练 上篇 专题一 第7讲 化学反应速率和化学平衡_高三理化生_理化生_高中教育_教育专区。第7讲 化学反应速率和化学平衡能力提升训练 ...

高中化学奥林匹克竞赛辅导讲座(20讲)第1讲 气体

高中化学奥林匹克竞赛辅导讲座(20讲)第1讲 气体_学科竞赛_高中教育_教育专区。高中化学奥林匹克竞赛辅导讲座 第1讲【竞赛要求】 【知识梳理】 一、气体 1、扩散...

北京市一零一中学2013年高中化学竞赛第7讲 化学反应速率与化学平衡

北京市一零一中学2013年高中化学竞赛第7讲 化学反应速率与化学平衡_学科竞赛_高中教育_教育专区。第7讲 化学反应速率与化学平衡竞赛要求】 反应速率基本概念。...

高中化学奥林匹克竞赛辅导讲座:第1讲《气体》

高中化学奥林匹克竞赛辅导讲座:第1讲《气体》_学科竞赛_高中教育_教育专区。高中化学奥林匹克竞赛辅导讲座第 1 讲 气体 【竞赛要求】 竞赛要求】 气体。理想气体...