nbhkdz.com冰点文库

知能巩固提升(二) 课后巩固作业(二) 1.1.3

时间:2013-04-08


人教 A 选修 2-2 1..1.3 课后巩固作业(二)
(30 分钟 一、选择题(每小题 4 分,共 16 分) 1.函数 y=f(x)在 x=x0 处的导数 f′(x0)的几何意义是( (A)在点 x=x0 处的函数值 (B)在点(x0,f(x0))处的切线与 x 轴所夹锐角的正切值 (C)曲线 y=f(x)在点(x0,f(x0))处的切线的斜率 (D)点(x0,f(x0))与点(0,0)连线的斜率 2.(2012·无锡模拟)曲线 y=x3+ax+1 的一条切线方程为 y=2x+1,则实数 a=( (A)1 (B)3 (C)2 (D)4 ) (D)4 ) ) 50 分)

3.若曲线 y=2x2-4x+a 与直线 y=1 相切,则 a=( (A)1 (B)2 (C)3

4.(2011·山东高考)曲线 y=x3+11 在点 P(1,12)处的切线与 y 轴交点的纵坐标 是( (A)-9 ) (B)-3 (C)9 (D)15

二、填空题(每小题 4 分,共 8 分) 5.(2012·沈阳高二检测)如图,函数 y=f(x)的图象在点 P 处的切线方程是 y=-x+8,则 f(5)+f′(5)=_____.

-1-

6.已知函数 y=ax2+b 在点(1,3)处的切线斜率为 2,则 =______. 三、解答题(每小题 8 分,共 16 分) 7.已知抛物线 y=x2+4 与直线 y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 8.(易错题)已知曲线 f(x)=x2+1 与 g(x)=x3+1 在 x=x0 处的切线互相垂直,求 x0 的值. 【挑战能力】 (10 分)已知曲线 y=x2+1,则是否存在实数 a,使得经过点(1,a)能够作出该曲线 的两条切线?若存在,求出实数 a 的取值范围;若不存在,请说明理由.

a b

答案解析
1.【解析】选 C.根据导数的几何意义可知选项 C 正确. 2.【解析】选 C.设切点为(x0,y0), 则 f′(x0)=
[(x 0 ? ?x)3 ? a(x 0 ? ?x) ? 1] ? x 3 ? ax 0 ? 1? ? 0 lim ?x ?0 ?x
2 2 lim = ?x ?0(?x 2 ? 3x 0 ?x ? 3x 0 ? a) ? 3x 0 ? a ,

2 ∴ 3x 0 +a=2



又∵切点既在曲线上,又在切线上, ∴ x3 +ax0+1=2x0+1 0
-2-



由①②得 ?

? x 0 ? 0, ?a ? 2.

【变式训练】已知曲线 y=x3 上过点(2,8)的切线方程为 12x-ay-16=0,则实数 a 的值为( (A)-1 ) (B)1 (C)-2
(x ? ?x)3 ? x 3 ?x

(D)2

lim 【解析】选 B.∵y′= ?x ?0

lim = ?x ?0(?x 2 ? 3x?x ? 3x 2 ) =3x2,

∴k=3×22=12,即

12 =12,得 a=1. a

3.【解析】选 C.设切点坐标为(x0,1),则 f′(x0)=
2 [2(x 0 ? ?x)2 ? 4(x 0 ? ?x) ? a] ? 2x 0 ? 4x 0 ? a ? ? lim ?x ?0 ?x

lim = ?x ?0(4x 0 ? 2?x ? 4) =4x0-4=0,

∴x0=1.即切点坐标为(1,1).∴2-4+a=1,即 a=3. 4.【解题指南】解答本题先求导,再由导数意义求切线方程,最后求切线与 y 轴交点的纵坐标. 【解析】选 C.因为 y′= lim
(x ? ?x)3 ? 11 ? ? x 3 ? 11? ?x ? lim (?x 2 ? 3x?x ? 3x 2 ) =3x ,所以切线的斜率 k=
?x ?0
2

?x ?0

f′(1)=3,又因为切点为 P(1,12),故切线方程为 3x-y+9=0,令 x=0,得 y=9. 【变式训练】 函数 f(x)=x3+4x+5 的图象在 x=1 处的切线在 x 轴上的截距为_____. 【解析】f′(x)=
[(x ? ?x)3 ? 4(x ? ?x) ? 5] ? x 3 ? 4x ? 5? ? lim ?x ?0 ?x
lim = ?x ?0 3x 2 ? ?x ? 3x ? (?x) 2 ? (?x)3 ? 4?x ?x
-3-

lim = ?x ?[3x 2 ? 3x ? ?x ? (?x)2 ? 4] 2+4 =3x 0

f′(1)=7,f(1)=10,函数的图象在 x=1 处的切线方程为 y-10=7(x-1),即 7x-y+3=0.当 y=0 时,x= ? . 答案: ?
3 7 3 7

5.【解析】f(5)+f′(5)=(-5+8)+(-1)=2. 答案:2 6.【解析】由题意知,
a(1 ? ?x)2 ? b ? ? a ? b ? lim ? lim (a?x ? 2a) =2a=2, ?x ?0 ?x ?0 ?x

∴a=1,又 3=a×12+b,∴b=2,即 ? . 答案:
1 2

a b

1 2

? y ? x 2 ? 4, 7.【解析】(1)由 ? 得 x2+4=x+10, ? y ? x ? 10,

即 x2-x-6=0, ∴x=-2 或 x=3.代入直线的方程得 y=8 或 y=13. ∴抛物线与直线的交点坐标为(-2,8)或(3,13). (2)∵y=x2+4, ∴y′= lim
(x ? ?x)2 ? 4 ? ? x 2 ? 4 ? ?x

?x ?0

lim = ?x ?0(2x ? ?x) =2x.

∴y′|x=-2=-4,y′|x=3=6. 即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为 6. ∴在点(-2,8)处的切线方程为 4x+y=0; 在点(3,13)处的切线方程为 6x-y-5=0.
-4-

【方法技巧】利用导数研究曲线切线的关键点 在应用导数的几何意义研究曲线的相关问题时,要紧紧把握住切点所具备的三 个条件: (1)切点在切线上,即切点满足切线方程; (2)切点在曲线上,即切点满足曲线方程; (3)切点处的导数值是切线的斜率. 利用这三个条件,设切点、找等量关系、构造函数、不等式来解决问题. 8.【解析】∵f′(x)= lim
lim = ?x ?0(?x ? 2x) =2x,

(x ? ?x)2 ? 1 ? ? x 2 ? 1? ?x

?x ?0

g′(x)= lim

(x ? ?x)3 ? 1 ? ? x 3 ? 1? ?x

?x ?0

lim = ?x ?0(?x 2 ? 3x?x ? 3x 2 ) =3x2,

2 ∴k1=2x0,k2= 3x 0 ,∴k1k2=-1,

即 6x 3 =-1,解得 x0= ? 0 【挑战能力】

3

36 . 6

2 【解题指南】设出切点,求导写出切线方程,因为切线过点(1,a),且 y0= x0 +1

可以得到关于 x0 的方程,切线有两条即方程有两个不等的实数根,所以判别式 大于 0,得到关于 a 的不等式,解集非空即存在.
?y (x ? ?x) 2 ? 1 ? x 2 ? 1 【解析】∵ ? =2x+Δx, ?x ?x
lim ∴y′= ?x ?0 ?y ? lim (2x ? ?x) =2x. ?x ?x ?0
0

设切点为 P(x0,y0),则切线的斜率为 k= y? |x ?x =2x0,由点斜式可得所求切线方程 为 y-y0=2x0(x-x0).

-5-

2 又∵切线过点(1,a),且 y0= x0 +1, 2 ∴a-( x0 +1)=2x0(1-x0), 2 即 x0 -2x0+a-1=0.∵切线有两条,

∴Δ=(-2)2-4(a-1)>0,解得 a<2. 故存在实数 a,使得经过点(1,a)能够作出该曲线的两条切线,a 的取值范围是 {a|a<2}.

-6-


赞助商链接

知能巩固提升(三) 课后巩固作业(三) 1.2.1.1

知能巩固提升(三)/课后巩固作业(三) (时间:30 分钟 满分:50 分) 一、选择题(每小题 4 分,共 16 分) 1.给出下列问题: (1)从 2,3,5,7,11 中任...

2013版高中物理 19.2 放射性元素的衰变知能巩固提升 新...

2013 版高中物理 19.2 放射性元素的衰变知能巩固提升 新人教版选修 3-5 【...【课后巩固】 235 207 6.(2012·大纲版全国卷) 92U 经过 m 次α 衰变和 ...

2013版高中物理 18.3 氢原子光谱知能巩固提升 新人教版...

2013 版高中物理 18.3 氢原子光谱知能巩固提升 新...耳末公式 1 1 1 =R( 2 ? 2 )(n=3,4,5,...【课后巩固】 6.(2012·盐城高二检测)关于光谱,...

2013版高中物理 19.1 原子核的组成知能巩固提升 新人教...

2013版高中物理 19.1 原子核的组成知能巩固提升 新人教版选修3-5_理化生_高中...【课后巩固】 6.最早提出原子核是由质子和中子组成的科学家是( ) A.贝可勒尔...

优化方案数学必修3(北师大版)第1章§5-5.2应用案巩固提升

优化方案数学必修3(北师大版)第1章§5-5.2应用案巩固提升_数学_高中教育_...( A.0,1.1 C.4,1 解析:选 A.由题意知,众数为 0.数据 xi 出现的...

2011届高考英语第一轮必修3巩固提升复习题1

2011届高考英语第轮必修3巩固提升复习题1_从业...put some work 意为“布置一些作业” 。 10. ...someone 表示“有人(某个人,但不知是哪个)把...

优化方案数学必修2(人教A版)第一章1.3.1应用案巩固提升

优化方案数学必修2(人教A版)第1.3.1应用案巩固提升_数学_高中教育_教育....2π C.4π D.8π 解析:选 B.设轴截面正方形的边长为 a,由题意知 S...

...第3章 第1讲 基因的本质课后巩固提升 新人教版必修2...

(智慧测评) 2015 高考生物 第 3 章第 1 讲 基因的本质课后巩固提 升 新人教版必修 2 、选择题 1. (2012·上海高考)赫尔希(A.Hershey)和蔡斯(M.Chase...

数学必修4(人教A版)第二章2.1.3应用案巩固提升

数学必修4(人教A版)第二章2.1.3应用案巩固提升_高中教育_教育专区。[A 基础达标] 1.关于零向量,下列说法中错误的是( A.零向量是没有方向的 B.零向量的...

地理必修1(鲁教版)第三单元第一节第2课时随堂演练巩固提升

地理必修1(鲁教版)第三单元第一节第2课时随堂演练巩固提升_高中教育_教育专区。垂直地域分异 1.读甲、乙两山地自然带垂直分布图,下列说法正确的是( ) A.影响...