nbhkdz.com冰点文库

1.6.2 第2课时 平面与平面垂直的性质

时间:2014-07-20


第2课时 平面与平面垂直的性质

1.掌握平面与平面垂直的性质,并能用其分析解决有关 问题; 2.通过定理的学习,培养空间想象能力、推理论证能力、 几何直观能力. 3.恰当利用身边的简单物体进行自主探索活动,理解数

学概念和结论形成过程,体会蕴涵在其中的思想方法.

1.平面与平面垂直的定义是什么? 如何判定平面与平面垂直?

2.平面与平面垂直的判定定理,解决了平面与平面垂直的
条件问题;反之,在平面与平面垂直的条件下,能得到哪 些结论?

墙壁与地面是垂直的,你有什么发现?

问题1:如果平面α 与平面β 互相垂直,直线l在平面α 内,
那么直线l与平面β 的位置关系有哪几种可能?

α

l

α

l

α
l

β

β

β

问题2:黑板所在平面与地面所在平面垂直,在黑板上是否 存在直线与地面垂直?若存在,怎样画线?

α

β

问题3:长方体ABCD—A1B1C1D1中,平面A1ADD1与平面ABCD垂直, 其交线为AD,直线A1A,D1D都在平面A1ADD1内,且都与交线 AD垂直,这两条直线与平面ABCD垂直吗?

垂直 C1 B1 C B A A1 D D1

问题4:一般地,? ? ? ,?

? ? CD, AB ? ? , AB ? CD,

垂足为B,那么直线AB与平面 ? 的位置关系如何?

垂直 β D B C A

α

平面与平面垂直的性质定理 如果两个平面互相垂直,那么在一个平面内垂直于它 们交线的直线垂直于另一个平面.

β

D
α

B C

A

问题6:如何用符号语言描述这个定理? 该定理在实际应用中有何理论作用?

α l β m

? ? ? , ? ? ? m, l ? ? , l ? m ? l ? ?.

问题1:若α ⊥β ,过平面α 内一点A作平面β 的垂线,
垂足为B,那么点B在什么位置?说明你的理由.

α

A

β

B

问题2:上述分析表明:如果两个平面互相垂直,那么经过

一个平面内一点且垂直于另一个平面的直线,必在这个平
面内.该性质在实际应用中有何理论作用?

α

A

β

B

问题3:对于三个平面α 、β 、γ ,如果α ⊥γ ,β ⊥γ ,

?

? ? l ,那么直线l与平面γ 的位置关系如何?为什么?
β

l α γ

已知:三个平面 ? , ? , ? , 且? ? ? ,? ? ? , ?
求证: l ? ?

? ?l

证明: 在平面 ? 内作直线 a 垂直于平面 ? 与平面 ? 的交线, 作直线 b 垂直于平面 ? 与平面 ? 的交线
则 a ? ?,b ? ? ,
又?

? ?l ,

∴ l ? a, l ? b

l

β a

α
b γ

∴l ??

例4

如图,长方体 ABCD ? A?B?C ?D? 中, MN 在平面 BCC ?B? 内,

MN ? BC 于点 M.判断 MN 与 AB 的位置关系,并说明理由.
解:显然,平面 BCC ?B? ? 平面ABCD ,交线为 BC .

因为 MN 在平面 BCC ?B? 内,且 MN ? BC ,
所以 MN ? 平面ABCD ,

又 AB ? 平面 ABCD ,从而 MN ? AB .

回顾上节例题
例2 如图,在正方体 ABCD ? A?B ?C ?D ? 中, BD , BC ?, DC ? 分别为三条

对角线, A?C 为一条对角线 求证: ( 1) A?C ? BD ; ( 2) A?C ? 平面DBC ?;

可以得出几组互相垂直的平面呢?

1 .判断题: ( 1)两个平面垂直,经过一个平面内的一点与交线垂直的直线 垂直于另一个平面 ( 2)三个平面α 、β 、γ ,若α ⊥β ,β ⊥γ ,那么α ∥γ ( 3)三个平面α 、β 、γ ,若α ∥β ,γ ⊥α ,那么 γ ⊥β (4)过平面外的一条直线只可以作一平面垂直于这个平面
2.若平面α 、β 互相垂直,则( A α 中的任意一条直线垂直于β C 平行于α 的直线垂直于β



×) (× ) (√) ( √)

D

) B α 中有且只有一条直线垂直于β D α 内垂直于交线的直线必垂直于β

1.平面与平面垂直的性质
2.空间想象能力,逻辑推理能力 3.转化思想

不灭的信心是通向成功彼岸的灯塔。


赞助商链接

高中数学必修二:平面与平面垂直的性质(解析版)

高中数学必修:平面与平面垂直的性质(解析版)_数学_高中教育_教育专区。高中数学必修:平面与平面垂直的性质(解析版) 平面与平面垂直的性质 精炼基础,链接高考 ...

最新人教版高中数学必修2第二章《平面与平面垂直的性质》教学设计...

平面与平面性质定理的应用. 课时安排 1 课时 教学过程 复习 (1)面面垂直的定义. 如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直. (2)面面...

2.3.4平面与平面垂直的性质(教案)

河北武邑中学课堂教学设计备课人 课题 教学目标 重点 难点 滕领涛 授课时间 12.14 §2、3.4 平面与平面垂直的性质使学生掌握平面与平面垂直的性质定理; 能运用...

2.3.4 平面与平面垂直的性质教案

2.3.4 平面与平面垂直的性质教案_数学_高中教育_教育专区。张喜林制 [ 2....(四)拓展应用 例 1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点...

11.示范教案(2.3.4 平面与平面垂直的性质)

11.示范教案(2.3.4 平面与平面垂直的性质)_其它课程_小学教育_教育专区。2.3.4 平面与平面垂直的性质 整体设计 教学分析 空间中平面与平面之间的位置关系中,...

人教版高中数学必修二教案:2-2《平面与平面垂直的性质》

人教版高中数学必修教案:2-2平面与平面垂直的性质》_高三数学_数学_高中教育_教育专区。《平面与平面垂直的性质》教案 教学目标 1.知识与技能 (1)掌握平面...

2.3.4平面与平面垂直的性质导学案

高二数学 SX-G2-B2-U2-L2.3.4 2.3.4 《平面与平面垂直的性质》导学案 编写人: 审核:高二数学组 编写时间:2015.9.30 一、教学目标: 1、结合课本第71...

人教高中课标必修二 2.3.3平面与平面垂直的性质

人教高中课标必修 2.3.3平面与平面垂直的性质_高一数学_数学_高中教育_教育专区。人教高中课标必修模块一精品教案第1 页共 6 页 2.3.3 直线与平面垂直的性...

《2.3.4平面与平面垂直的性质》同步练习1

2.3.4平面与平面垂直的性质》同步练习1 - 《2.3.4平面与平面垂直的性质》同步练习1 一、选择题 1.在空间中,下列命题正确的是( ) A.若三条直线两两...

《2.3.4平面与平面垂直的性质》教学案2-公开课-优质课(...

2.3.4平面与平面垂直的性质》教学案2-公开课-优质课(人教A版必修精品)_高一数学_数学_高中教育_教育专区。《2.3.4 平面与平面垂直的性质》教学案2 1....