nbhkdz.com冰点文库

均值不等式


”是一个重要的基本不等式,可以求函数的值域。在 应用该不等式时,务必注意其条件:一是正数条件,即 a、b 都是正数;二是定 值条件,即和是定值或积是定值;三是相等条件,即 a=b 时取等号,简称“一 正、二定、三相等”。当条件不具备时,需要进行适当的转化,现举例说明。 一、不具备“正值”条件时,需将其转化为正值

例 1. 求函数

的值域





不一定是正值,故需先将其转化为正值。

解:当

时,

,当

时取等号。



时,

,当 则函数的值域为

时取等号。

例 2. 已知 解:由题意知,

,求函数

的值域。

因此,

,当且仅当

时,即

时,等号成立。

∴函数

的值域为

二、不具备“定值”条件时,需将其构造成定值条件

例 3. 已知

,求函数

的值域。



的积不是定值,故需先将其构造成定值。

解:

,当且仅当

时,即

时,等号成立。

∴函数

的值域为

三、不具备“相等”条件时,需进行适当变形或利用函数单调性求值域。

例 4. 已知

,求函数

的值域。

若直接利用均值不等式,则有 而 ,所以等号不成立。

,当

时,等号成立,

解:∵



上为减函数

∴函数



上为减函数

∴函数



上的最小值

,此时

∴函数

的值域为

例 5. 已知

,求函数

的值域。 的和不是定值, 故需将 进

由题意可知 均为正数, 因 行适当的变形,构造定值。

解:

,当且仅当

,即

时,等号成立。

∴函数

的值域为

评注:在利用“均值不等式”求值域时,若不具备“定值”条件,需将其构造成 定值,并巧妙用“定值”这个条件对所求式子进行分拆、组合、添加系数等使之 变成可用均值不等式的形式。


均值不等式

均值不等式百科名片 1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an) 2、几何平均数:Gn=(a1a2...an)^(1/n) 3、算术平均数:An=(a1+a2+...+an)/n...

均值不等式【高考题】

均值不等式【高考题】_数学_高中教育_教育专区。均值不等式 均值不等式应用一、求最值 直接求 例 1、(重庆理,2005)若 x , y 是正数,则 ( x ? A. 3 ...

均值不等式

学校: 学员姓名: 年级:高二 辅导科目:数学 教学课题:均值不等式 学科教师: 教学目标 教学内容 一.均值不等式 掌握均值不等式的基本运用 1.(1)若 a, b ? R...

均值不等式公式总结及应用

均值不等式公式总结及应用_高一数学_数学_高中教育_教育专区。均值不等式 公式 总结 及 应用 均值不等式应用 1. (1)若 a, b ? R ,则 a ? b ? 2ab (...

均值不等式的论文

本科毕业论文关于均值不等式的探讨 DISCUSSION ON INEQUALITY 学院(部) : 理学院 专业班级: 数学与应用数学 07-1 学生姓名: 指导教师: 吴兴奎 周小红讲师 2011 ...

均值不等式的证明

均值不等式的证明_经济学_高等教育_教育专区。介绍了均值不等式的证明,且有部分习题 平均值不等式及其证明平均值不等式是最基本的重要不等式之一,在不等式理论研...

均值不等式重要公式

注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链: 2 1 1 ? a b ? ab ? a?b ? 2 a2 ? b2 ...

几个重要的均值不等式

已知实数 x,y 满足 x2+y2=1,求(1-xy)(1+xy) 总之,利用均值不等式求最值的方法多样,而且变化多端,要掌握常见的变形技巧,掌握常见题型 的求解方法,加强...

不等式和均值不等式

中小学 1 对 1 课外辅导专家 龙文教育学科老师个性化教案教师 学科 学案主题 教学内容 个性化学习问题解决 数学 复习巩固课 不等式 不等式、均值不等式、线性规划...

均值不等式及其证明

均值不等式及其证明_高二数学_数学_高中教育_教育专区。1 平均值不等式及其证明平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明 中占有重要的位置...