nbhkdz.com冰点文库

高中数学复习学(教)案(第1讲)集合的概念与运算

时间:2010-09-21


题目 第一章集合与简易逻辑 集合的概念与运算 高考要求 1 理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等 关系的意义 2 掌握有关的术语和符号,并会用它们正确表示一些简单的集合 3 理解逻辑联结词“或” “且” “非”的含义;理解四种命题及其相互关 系;掌握充要条件的意义 4 学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问 题,形成良好的思维品质 知识点归纳 定义:一组对象的全体形成 形成一个集合 形成 特征:确定性、互异性、无序性 表示法:列举法{1,2,3,…}、描述法{x|P} 韦恩图 分类:有限集、无限集
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 新新新 新新新 新新新 新新新 新新新 新新新 新新新 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 源 源源源源 新新 新新 源源源源 新新 新新 源源源源 新新 新新 源源源源 新新 新新 源源源源 新新 新新 源源源源 新新 新新 源源源源 新新 新新 源源源源 新新 新新 源源源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源 源源 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 新新新 新新新 新新新 新新新 新新新 新新新 新新新 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源新新源 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源新新 源 源源源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源源源 源源 源源 源源源源 源源 源源 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 特特特特 特特王 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王特特 新王 王 新 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王 王王 新新 王王







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王新王王 王 新







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 c 王w x新kt@ 新王m 王 王 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新王特王特 新 特 王w 新@ 1新.c王m 王 王t x k 2 6 o c

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

数集:自然数集 N、整数集 Z、有理数集 Q、实数集 R、正整数集 N * 、空 集φ 关系:属于∈、不属于 、包含于 (或 )、真包含于 、集合相等=
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

运算:交运算 A∩B={x|x∈A 且 x∈B}; 并运算 A∪B={x|x∈A 或 x∈B}; 补运算 CU A ={x|x A 且 x∈U},U 为全集 性质:A A; φ A; 若 A B,B C,则 A C; A∩A=A∪A=A; A∩φ=φ;A∪φ=A; A∩B=A A∪B=B A B; A∩C U A=φ; A∪C U A=I;C U ( C U A)=A; C U (A ∪ B)=(C U A)∩(C U B) 方法:韦恩示意图, 数轴分析 注意:① 区别∈与 、 与 、a 与{a}、φ与{φ}、{(1,2)}与{1,2}; 注意 ② A B 时,A 有两种情况:A=φ与 A≠φ
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

③若集合 A 中有 n (n ∈ N ) 个元素, 则集合 A 的所有不同的子集个数 为 2 n ,所有真子集的个数是 2 n -1, 所有非空真子集的个数是 2 n 2
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

④ 区 分 集 合 中 元 素 的 形 式 : 如 A = {x | y = x 2 + 2 x + 1} ;
2 C B = { y | y = x 2 + 2 x + 1} ; = {( x, y ) | y = x + 2 x + 1} ;D = {x | x = x 2 + 2 x + 1} ;

2 E = {( x, y ) | y = x 2 + 2 x + 1, x ∈ Z , y ∈ Z } ; F = {( x, y ' ) | y = x + 2 x + 1} ;

第1页

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

y G = { z | y = x 2 + 2 x + 1, z = } x

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

⑤空集是指不含任何元素的集合 {0} 、φ 和 {φ } 的区别;0 与三者间的关
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

系 空集是任何集合的子集,是任何非空集合的真子集 条件为 A B ,在讨
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

论的时候不要遗忘了 A = φ 的情况

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

⑥符号“ ∈, ”是表示元素与集合之间关系的,立体几何中的体现 点与 直线(面)的关系 ;符号“ , ”是表示集合与集合之间关系的,立体几 何中的体现 面与直线(面)的关系 题型讲解 例 1 已知 A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且 A∩B={x|0<x ≤2},A∪B={x|x>-2} ,求 a、b 的值 解:A={x|-2<x<-1 或 x>0}, 设 B=[x1,x2] ,由 A∩B=(0,2]知 x2=2, 且-1≤x1≤0, ① ② 由 A∪B=(-2,+∞)知-2≤x1≤-1 由①②知 x1=-1,x2=2, ∴a=-(x1+x2)=-1,b=x1x2=-2 评述: 本题应熟悉集合的交与并的涵义, 熟练掌握在数轴上表示区间 (集 合)的交与并的方法 例 2 设集合 P={m|-1<m≤0},Q={m∈R|mx2+4mx-4<0 对任意实数 x 恒成立},则下列关系中成立的是 AP Q BQ P C P=Q D P∩Q=Q 剖析:Q={m∈R|mx2+4mx-4<0 对任意实数 x 恒成立}, 对 m 分类:①m=0 时,-4<0 恒成立; ②m<0 时,需Δ=(4m)2-4×m×(-4)<0,解得 m<0 综合①②知 m≤0,∴Q={m∈R|m≤0} 答案:A 评述:本题容易忽略对 m=0 的讨论,应引起大家足够的重视 例 3 已知集合 A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0, 0≤x≤2},如果 A∩B≠ ,求实数 m 的取值范围 剖析: 如果目光总是停留在集合这一狭窄的知识范围内, 此题的思维方 法是很难找到的 事实上,集合符号在本题中只起了一种“化妆品”的作用, 它的实际背景是“抛物线 x2+mx-y+2=0 与线段 x-y+1=0(0≤x≤2)有公 共点,求实数 m 的取值范围” 这种数学符号与数学语言的互译,是考生必
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
w c 1 c m x k 2 o t @ 6 .

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x @ 2 .6 m w t 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

新新新 新新 新新 源源源源 源 源源源源 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 特特 特特 特特 王王 新新 王王 新新 王王

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
x t 2 .6 m w @ 1 o k c c

第2页

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

须具备的一种数学素质

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

x 2 + mx y + 2 = 0, 得 解:由 x y + 1 = 0(0 ≤ x ≤ 2),
x2+(m-1)x+1=0 ① ∵A∩B≠ ,∴方程①在区间[0,2]上至少有一个实数解 首先,由Δ=(m-1)2-4≥0,得 m≥3 或 m≤-1 当 m≥3 时,由 x1+x2=-(m-1)<0 及 x1x2=1 知,方程①只有负根, 不符合要求; 当 m≤-1 时,由 x1+x2=-(m-1)>0 及 x1x2=1>0 知,方程①有两 个互为倒数的正根 故必有一根在区间(0,1]内,从而方程①至少有一个 根在区间[0,2]内 综上所述,所求 m 的取值范围是(-∞,-1] 评述:上述解法应用了数形结合的思想 如果注意到抛物线 x 2 +mx -y+2=0 与线段 x-y+1=0(0≤x≤2)的公共点在线段上,本题也可以利 用公共点内分线段的比λ的取值范围建立关于 m 的不等式来解
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

例 4 设 A = {x x + 4x = 0}, B = {x x + 2(a + 1) x + a 1 = 0},若B A ,
2 2 2

求实数 a 的取值范围 分析:若满足 B A ,则集合 B 需分两种情况求解
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

①集合 A 中的元素 x 是集合 B 中的元素;②集合 B 为空集 解:由 A = {x x 2 + 4 x = 0} = {x x = 0或x = 4} = {0, 4} ∵ B A ,∴ B = 或B = {0}或B = {4}或B = {0, 4}
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

当 B = 时 ,即 x 2 + 2( a + 1) x + a 2 1 = 0 无实根,由 < 0 , 即 4( a + 1) 2 4( a 2 1) < 0 ,解得 a < 1 ; 当 B = {0} 时,由根与系数的关系: 0 + 0=-2(a +1),× 0=a2 1 a = 1 0 当 B = {4} 时, 由根与系数的关系: 44 - a +1), ×(4)= 2 1a∈ = 2( (-4) a 当 B = {0, 4} 时, 由根与系数的关系: 4=- a +1), (4)=a2 1 a = 1 0 2( 0× 综上所得 a = 1或a ≤ 1 例 5 求 1 到 200 这 200 个数中既不是 2 的倍数,又不是 3 的倍数,也 不是 5 的倍数的自然数共有多少个?
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

第3页

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

分析:分析 200 个数分为两类,即满足题设条件的和不满足题设条件 的两大类,而不满足条件的这一类标准明确而简单,可考虑用扣除法 解:如图先画出文氏图,不难看出不符合条件 的数共有 5的倍数 (200÷2)+(200÷3)+(200÷5) 2的倍数 -(200÷10)-(200÷6)-(200÷15) 3的倍数 +(200÷30)=146 所以,符合条件的数共有 200-146=54(个)
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

例 6 已 知 全 集 S = {1,3, x x 2 x} , A={1, 2 x 1 } 如 果
3 2

C S A = {0} ,则这样的实数 x 是否存在?若存在,求出 x ,若不存在,说明
理由
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

分析:此题的关键是理解符号 C S A = {0} 是两层含义: 0 ∈ S且0 A 解:∵ C S A = {0} ∴ 0 ∈ S且0 A ,即 x x 2 x =0,
3 2

解得 x1 = 0, x2 = 1, x3 = 2 当 x = 0 时, 2 x 1 = 1 ,为 A 中元素 当 x = 1 时, 2 x 1 = 3 ∈ S 当 x = 2 时, 2 x 1 = 3 ∈ S ∴这样的实数 x 存在,是 x = 1 或 x = 2 另法:∵ C S A = {0}
3 2
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

∴ 0 ∈ S 且0 A , 3 ∈ A

∴ x x 2 x =0 且 2 x 1 = 3 ∴ x = 1 或 x = 2 变式思考题:
新新新 新源新 源源源源新源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

同时满足条件: M {1,2,3,4,5}; ②若 a ∈ M , 则6-a ∈ M , ① 这样的 集合 M 有多少个,举出这些集合来 答案:这样的集合 M 有 8 个:
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

,{3},{1, 5},{2, 4},{1,3,5},{2, 3, 4},{1, 2, 4,5}{1, 2,3, 4, 5}
第4页
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

例 7 某学校艺术班有 100 名学生,其中学舞蹈的学生 67 人,学唱歌 的学生 45 人, 而学乐器的学生既不能学舞蹈, 又不能学唱歌,人数是 21 人, 那么同时学舞蹈和唱歌的学生有多少人? 解:设学舞蹈的学生有 x 人,学唱歌的人有 y 人, 100 既学舞蹈又学唱歌的人又 z 人, 舞蹈 歌唱 z 由题意可列方程: y x

x + z = 67 y + z = 45 x + y + z = 79

x = 34 解得 y = 22 z = 33
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

所以,同时学舞蹈和唱歌的有 33 人

2 例 8 对于集合 A = {x x 4ax + 4a 3 = 0}, B ={x x 2 2x + a + a + 2 = 0}

2

2

是否存在实数 a, 使A U B = ?若存在,求出 a 的取值,若不存在,试说 明理由 解:Q A U B =
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

∴ A = B = , 即二次方程:

x 2 4ax + 4a 3 = 0与x 2 2 2 x + a 2 + a + 2 = 0均无实数解 ,
2 1=4a 4(4a 3) < 0 ,解之得 1 < a < 2 ∴ 2 = 8a 2 4( a 2 + a + 2) < 0

故存在实数 a且a ∈ {a 1 < a < 2}, 使A U B =

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

2 例 9 已知集合 A = {m, m + d , m + 2d }, B = {m, mq, mq } ,其中m ≠ 0 ,

且A = B ,求 q 的值

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

解:由 A = B 可知, (1)

m + d = mq
2 m + 2d = mq

,或(2)

m + d = mq 2 m + 2d = mq

解(1)得 q = 1 , 解(2)得 q = 1, 或q =

1 2

又因为当 q = 1 时, m = mq = mq 2 与题意不符
第5页
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

所以, q =

1 2

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

例 10 已知 R 为全集,A ={x | log1 (3 x) ≥2}, B = {x |
2

5 ≥ 1}, 求CR A I B x+2

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

解:由 log 1 (3 x ) ≥ 2可解得-1 ≤ x < 3
2

所以 A = {x | 1 ≤ x < 3}, 故CR A = {x | x < 1,或x ≥ 3} 由

5 ≥ 1,可解得 2 < x ≤ 3, 故B = {x | 2 < x ≤ 3} x+2

∴CR A I B = {x x < 1, 或x ≥ 3} I {x | 2 < x ≤ 3} = {x | 2 < x < 1, 或x = 3}
2 例 11 已知集合 A = {1,1}, B = {x | x 2ax + b = 0}, 若B ≠ 且A U B = A ,

求 a, b 的值

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

解:Q A U B = A, B ≠ ∴ B A且B ≠ , 故B有两种存在情况: (1)当 B 含有两个元素时: B = A = {1,1}, 此时a = 0, b = 1 ; (2)当 B 含有一个元素时: = 4a 4b = 0 a = b
2 2

若 B = {1}时,有a 2 2a + 1 = 0,∴ a = 1, b = 1 若 B = {1}时,有a 2 + 2a + 1 = 0,∴ a = 1, b = 1 综上可知:

a = 0 a=1 a = 1 , 或 ,或 b = 1 b=1 b = 1

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

小结: 小结 1 正确理解集合中元素的特征:确定性,互异性,无序性; 2 用列举法或描述法给出集合,考察元素与集合之间的元素;或不给出 集合中的元素, 但只给出若干个抽象的集合及某些关系, 运用文氏图解决有 关问题 3 熟练运用集合的并、交、补的运算并进行有关集合的运算 4 注意符号的理解, 相互之间的转化: 例如 AI B = A A B AU B = B
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

等等

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

第6页

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

学生练习 题组一: 1 已知集合 M={x|x2<4},N={x|x2-2x-3<0},则集合 M∩N 等于 A {x|x<-2} B {x|x>3} C {x|-1<x<2} D {x|2<x<3} 解析:M={x|x2<4}={x|-2<x<2}, N={x|x2-2x-3<0}={x|-1<x<3},结合数轴, ∴M∩N={x|-1<x<2} x - 2 -1 o 1 2 3 答案:C
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王ckt@ 王王 w 新 c m 王 x 1 o 2 新 6 .

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 王kc新王oc王 x @ 2 .6 m 王 w t 1 新

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新

新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 王kc新王c王 新 x t 2 .6 m 王 w @ 1 o

2 已知集合 A={x∈R|x<5- 2 },B={1,2,3,4},则( CR A)∩B
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

等于 A {1,2,3,4}
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

B {2,3,4}
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

C {3,4}
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

D {4}
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

解析: CR A={x∈R|x≥5- 2 },而 5- 2 ∈(3,4) , ∴( CR A)∩B={4}
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

答案:D 3 设集合 P={1,2,3,4,5,6},Q={x∈R|2≤x≤6},那么下列结论 正确的是 A P∩Q=P B P∩Q Q C P∪Q=Q D P∩Q P 解析:P∩Q={2,3,4,5,6},∴P∩Q P 答案:D 4 设 U 是全集,非空集合 P、Q 满足 P Q U,若求含 P、Q 的一个集 合运算表达式,使运算结果为空集 ,则这个运算表达式可以是______ 解析:构造满足条件的集合,实例论证 U={1,2,3} ,P={1} ,Q={1,2} ,
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

, 则( CU Q)={3} ( CU P)={2,3},易见( CU Q)∩P= 答案: CU Q)∩P (

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

5 已知集合 A={0,1} ,B={x|x∈A,x∈N*} , N ,C={x|x A}
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

则 A、B、C 之间的关系是________ 解析:用列举法表示出 B={1} ,C={ , , ,A} {1}{0} ,易见其关 系 这里 A、B、C 是不同层次的集合,C 以 A 的子集为元素,同一层次的集 合可有包含关系,不同层次的集合之间只能是从属关系 答案:B A,A∈C,B∈C 题组二: 2 1 设全集为实数集 R, 集合 M={x|x 1999x2000>0},P={x||x1999|<a}(a 为
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

第7页

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王

常数),且1∈P,则 M 与 P 满足 ( (A) CR M U P = R (C) CR M U CR P = R



(B) M U CR P = R (D) M ∪ P = R

2.若非空集合 A={x|2a+1≤x≤3a5},B={x|3≤x≤22},则能使 AB 成立的所有 a 的集合是( ) (A){a|1≤a≤9} (B){a|6≤a≤9} (C){a|a≤9} (D) 2 3.设集合 A={x|x <a} ,B={x|x<2},若 A∩ B=A,则实数 a 的取值范围是( ) (A)a<4 (B)a≤4 (C)0<a≤4 (D)0<a<4 4.若{1,2} A{1,2,3,4,5}, 则满足这一关系的集合 A 的个数为 2 5.设集合 A={x|x +x1=0},B={x|ax+1=0},若 B A,则实数 a 的不同取值个 数为 2 2 6 设全集 I=R,集合 A={x|x x2= y ,y∈ R,y≠0},B={y|y=x+1,x∈A},则
新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 .

CI ( A I B) =

新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

7.若集合 A={32x,1,3} ,B={1,x },且 A∪ B=A,求实数 x
2

2

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

8.设全集 I=R,A={x| x + 1 ≤0},B={x|lg(x 2)=lgx},求 A∩ CI B
2 2 2 2

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

9.已知集合 A={y|y (a +a+1)y+a(a +1)>0},B={y|y=x /2x+5/2,0≤x≤3}, 若 A∩ B=,求实数 a 的取值范围 10. 已知集合 A={x|6/(x+1)≥1},B={x|x22x+2m<0,x∈R},若 A∪B=A,求实数 m 的取值范围
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王特王王特王 新特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

11.已知 A={x|x2ax+a219=0},B={x|log3(x2+x3)=1},C={x| 3 A∩B,A∩C=,求实数 a 的值 参考答案: 1 D 2. B 3. B
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 w 新 c m 王 王ckt@ 王王 x 1 o 2 新 6 . 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

x 2 7 x +10

=1},且

4. 7 8. {1}
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新

5. 3

6 (∞,0]∪[2,+∞) 7. x= 3 或 x= ± 3
新新新 新新新 源源源源源源源源 源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王王 特 新 x t 2 .6 m 王 w @ 1 o 王kc新王c王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

新新新 新新源 源源源源源源新源 源 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王新 王 王 x @ 2 .6 m 王 w t 1 新 王kc新王oc王

9. a≤ 3 或 3 ≤a≤2
源 源 源

10. m≥3/2

11. a= 5

课前后备注

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

第8页

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源 特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新

共8页

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源 特 特特特特特 特王特王新特王 新特特 特 王 王新王新 王 王 新新新 源源新源新源新源 源 源源源 源源源源源源源源 源 特 特特特特特 特王特特特特王 新王新 特 王 王新王新 王 王


赞助商链接

...高三数学一轮复习 1.1集合的概念和运算(导学案)

山西省朔州市朔城区第一中学2017届(课标卷)高三数学一轮复习 1.1集合的概念和运算(导学案)_数学_高中教育_教育专区。理科数学导学案班级 姓名 学生使用时间: ...

...数学(文)总复习(第1轮)同步测控 第1讲 集合的概念及...

2014版学海导航数学()总复习(第1轮)同步测控 第1讲 集合的概念运算 Word版含答案]_高中教育_教育专区。2014版学海导航数学()总复习(第1轮)同步测控 第...

...第一章集合与常用逻辑用语第1讲集合的概念和运算理

2018版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念和运算理_数学_高中教育_教育专区。第一章 第1讲一、选择题 集合与常用逻辑用语 集合的概念和...

高中数学二轮复习集合的概念与运算教案含答案(全国通用)

高中数学二轮复习集合的概念与运算教案含答案(全国通用)_数学_高中教育_教育专区...高中数学复习学(教)案(第... 124人阅读 8页 1下载券 高中数学复习学案(...

...(理)一轮复习讲义 第一章 第1讲 集合的概念与运算

2016届新课标数学(理)一轮复习讲义 第一章 第1讲 集合的概念与运算_数学_高中教育_教育专区。2016届新课标数学(理)一轮复习讲义 第一章 第1讲 集合的概念与...

...复习第一章集合与常用逻辑用1.1集合的概念与运算课...

创新设计江苏专用2018版高考数学一轮复习第一章集合与常用逻辑用1.1集合的概念与运算课时作业理_数学_高中教育_教育专区。第一章 第1讲 集合与常用逻辑用语 集合...

高考数学复习第1课 集合的概念与运算

高考数学复习第1集合的概念与运算_数学_高中教育_教育专区。江苏高考复习专题...【题组强化·重点突破】 1.(2014·南京学情调研)已知集合 A={x|x<2,x∈...

最新人教版高一数学必修1第一章《集合的概念与运算》单...

最新人教版高一数学必修1第一章《集合的概念与运算》单元复习训练 - 第一章 集合与简易逻辑 课时训练 1 集合的概念与运算 【说明】 本试卷满分 100 分,考试...

集合的概念与运算经典例题及习题

集合的概念与运算经典例题及习题_高一数学_数学_高中教育_教育专区。第1讲 ? 集合的概念和运算 ? ? ? b 【例 1】 ?已知 a∈R, b∈R, 若?a,a,1?={...

...高考数学一轮复习(讲+练+测)专题1.1 集合的概念及其...

2018年(江苏版)高考数学一复习(讲+练+测)专题1.1 集合的概念及其基本运算(测)及答案_数学_高中教育_教育专区。专题 1.1 集合的概念及其基本运算 班级 __...