nbhkdz.com冰点文库

高中物理常见的物理模型(1)

时间:2011-05-02


2011 届高考黄冈中学物理冲刺讲解、练习题、预测题 17:第 9 专题 高中物理常见的物理模型(1)

方法概述
高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程 与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一 些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含 3~4 道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的 加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在 这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专 题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特, 本专题也略加论述.

热点、重点、 热点、重点、难点
一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如 2009 年高考全国理综卷Ⅰ第 25 题、北京理 综卷第 18 题、天津理综卷第 1 题、上海物理卷第 22 题等,2008 年高考全国理综卷Ⅰ第 14 题、全国理综 卷Ⅱ第 16 题、北京理综卷第 20 题、江苏物理卷第 7 题和第 15 题等.在前面的复习中,我们对这一模型 的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题 方法. 1.自由释放的滑块能在斜面上(如图 9-1 甲所示)匀速下滑时,m 与 M 之间的动摩擦因数 ?=gtan θ.

图 9-1 甲 2.自由释放的滑块在斜面上(如图 9-1 甲所示): (1)静止或匀速下滑时,斜面 M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图 9-1 乙所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过 程中再在 m 上加上任何方向的作用力,(在 m 停止前)M 对水平地面的静摩擦力依然为零(见一轮书中的方 法概述).

图 9-1 乙 4.悬挂有物体的小车在斜面上滑行(如图 9-2 所示):

图 9-2

(1)向下的加速度 a=gsin θ 时,悬绳稳定时将垂直于斜面; (2)向下的加速度 a>gsin θ 时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度 a<gsin θ 时,悬绳将偏离垂直方向向下. 5.在倾角为 θ 的斜面上以速度 v0 平抛一小球(如图 9-3 所示):

图 9-3 2v0tan θ (1)落到斜面上的时间 t= ; g (2)落到斜面上时,速度的方向与水平方向的夹角 α 恒定,且 tan α=2tan θ,与初速度无关; v0tan θ (v0sin θ)2 (3)经过 tc= 小球距斜面最远,最大距离 d= . g 2gcos θ 6.如图 9-4 所示,当整体有向右的加速度 a=gtan θ 时,m 能在斜面上保持相对静止.

图 9-4 7.在如图 9-5 所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定速度 mgRsin θ . vm= B 2L 2

图 9-5 m 8. 如图 9-6 所示, 当各接触面均光滑时, 在小球从斜面顶端滑下的过程中, 斜面后退的位移 s= m+M L.

图 9-6 ●例 1 有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例 如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预 期结果、实验结论等进行比较,从而判断解的合理性或正确性. 举例如下:如图 9-7 甲所示,质量为 M、倾角为 θ 的滑块 A 放于水平地面上.把质量为 m 的滑块 B M+m 放在 A 的斜面上.忽略一切摩擦,有人求得 B 相对地面的加速度 a= gsin θ,式中 g 为重力加 M+msin2 θ 速度.

图 9-7 甲 对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做 了如下四项分析和判断, 所得结论都是“解可能是对的”. 但是, 其中有一项是错误的, .. 请你指出该项[2008 年高考·北京理综卷]( ) A.当 θ=0°时,该解给出 a=0,这符合常识,说明该解可能是对的 B.当 θ=90°时,该解给出 a=g,这符合实验结论,说明该解可能是对的 C.当 M?m 时,该解给出 a≈gsin θ,这符合预期的结果,说明该解可能是对的 g D.当 m?M 时,该解给出 a≈ ,这符合预期的结果,说明该解可能是对的 sin θ 【解析】当 A 固定时,很容易得出 a=gsin θ;当 A 置于光滑的水平面时,B 加速下滑的同时 A 向左加 速运动,B 不会沿斜面方向下滑,难以求出运动的加速度.

图 9-7 乙 设滑块 A 的底边长为 L,当 B 滑下时 A 向左移动的距离为 x,由动量守恒定律得: L-x x M =m t t mL 解得:x= M+m 当 m?M 时,x≈L,即 B 水平方向的位移趋于零,B 趋于自由落体运动且加速度 a≈g. g 选项 D 中,当 m?M 时,a≈ >g 显然不可能. sin θ [答案] D 【点评】本例中,若 m、M、θ、L 有具体数值,可假设 B 下滑至底端时速度 v1 的水平、竖直分量分 别为 v1x、v1y,则有: v1y (M+m)h h = = v1x L-x ML 1 1 1 mv 2+ mv 2+ Mv 2=mgh 2 1x 2 1y 2 2 mv1x=Mv2 解方程组即可得 v1x、v1y、v1 以及 v1 的方向和 m 下滑过程中相对地面的加速度. ●例 2 在倾角为 θ 的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于 斜面向上,一个垂直于斜面向下(如图 9-8 甲所示),它们的宽度均为 L.一个质量为 m、边长也为 L 的正 方形线框以速度 v 进入上部磁场时,恰好做匀速运动.

图 9-8 甲 (1)当 ab 边刚越过边界 ff′时,线框的加速度为多大,方向如何? (2)当 ab 边到达 gg′与 ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到 ab 边到达 gg′与 ff′的正中间位置的过程中, 线框中产生的焦耳热为多少?(线框的 ab 边在运动过程中始 终与磁场边界平行,不计摩擦阻力)

【解析】(1)当线框的 ab 边从高处刚进入上部磁场(如图 9-8 乙中的位置①所示)时,线框恰好做匀速 运动,则有: mgsin θ=BI1L BLv 此时 I1= R 当线框的 ab 边刚好越过边界 ff′(如图 9-8 乙中的位置②所示)时,由于线框从位置①到位置②始终 做匀速运动, 此时将 ab 边与 cd 边切割磁感线所产生的感应电动势同向叠加, 回路中电流的大小等于 2I1. 故 线框的加速度大小为:

图 9-8 乙 4BI1L-mgsin θ a= =3gsin θ,方向沿斜面向上. m (2)而当线框的 ab 边到达 gg′与 ff′的正中间位置(如图 9-8 乙中的位置③所示)时, 线框又恰好做匀 速运动,说明 mgsin θ=4BI2L 1 故 I2= I1 4 BLv 1 由 I1= 可知,此时 v′= v R 4 3 从位置①到位置③,线框的重力势能减少了 mgLsin θ 2 1 1 v 15 动能减少了 mv2- m( )2= mv2 2 2 4 32 由于线框减少的机械能全部经电能转化为焦耳热,因此有: 3 15 Q= mgLsin θ+ mv2. 2 32 [答案] (1)3gsin θ,方向沿斜面向上 3 15 (2) mgLsin θ+ mv2 2 32 【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下 求平衡速度的方法. 二、叠加体模型 叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多 次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如 2009 年高考天津 理综卷第 10 题、宁夏理综卷第 20 题、山东理综卷第 24 题,2008 年高考全国理综卷 Ⅰ 的第 15 题、北京 理综卷第 24 题、江苏物理卷第 6 题、四川延考区理综卷第 25 题等. 叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),下列两个典型 的情境和结论需要熟记和灵活运用. 1.叠放的长方体物块 A、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程 中(如图 9-9 所示),A、B 之间无摩擦力作用.

图 9-9 2.如图 9-10 所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总 路程或等于摩擦产生的热量,与单个物体的位移无关,即 Q 摩=f·s 相.

图 9-10 ●例 3 质量为 M 的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和 子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为 d1,然后右侧的射击手开枪,子 弹水平射入木块的最大深度为 d2,如图 9-11 所示.设子弹均未射穿木块,且两子弹与木块之间的作用力 大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修 3-5 模块)( )

图 9-11 A.最终木块静止,d1=d2 B.最终木块向右运动,d1<d2 C.最终木块静止,d1<d2 D.最终木块静止,d1>d2 【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为 m,由动量 守恒定律得: mv0-mv0=(M+2m)v 解得:v=0,即最终木块静止 设左侧子弹射入木块后的共同速度为 v1,有: mv0=(m+M)v1 1 1 Q1=f·d1= mv02- (m+M)v12 2 2 mMv02 解得:d1= 2(m+M)f 对右侧子弹射入的过程,由功能原理得: 1 1 Q2=f·d2= mv02+ (m+M)v12-0 2 2 (2m2+mM)v02 解得:d2= 2(m+M)f 即 d1<d2. [答案] C 【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的 公式,它是由动能定理的关系式推导得出的二级结论. 三、含弹簧的物理模型 纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出 各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等, 几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行 剖析. 对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问 题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如 2009 年高考福建理综卷第 21 题、 山东理综卷第 22 题、重庆理综卷第 24 题,2008 年高考北京理综卷第 22 题、山东理综卷第 16 题和第 22 题、四川延考区理综卷第 14 题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和

能量有关的弹簧问题. 1.静力学中的弹簧问题 (1)胡克定律:F=kx,?F=k·?x. (2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力. ●例 4 如图 9-12 甲所示,两木块 A、B 的质量分别为 m1 和 m2,两轻质弹簧的劲度系数分别为 k1 和 k2,两弹簧分别连接 A、B,整个系统处于平衡状态.现缓慢向上提木块 A,直到下面的弹簧对地面的压 力恰好为零,在此过程中 A 和 B 的重力势能共增加了( )

图 9-12 甲 (m1+m2) g A. k1+k2 (m1+m2)2g2 B. 2(k1+k2)
2 2

k1+k2 C.(m1+m2)2g2( ) k1k2 2 2 (m1+m2) g m1(m1+m2)g2 D. + k2 k1 【解析】取 A、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时, 向上提 A 的力 F 恰好为: F=(m1+m2)g 设这一过程中上面和下面的弹簧分别伸长 x1、x2,如图 9-12 乙所示,由胡克定律得:

图 9-12 乙 (m1+m2)g (m1+m2)g x1= ,x2= k1 k2 故 A、B 增加的重力势能共为: ?Ep=m1g(x1+x2)+m2gx2 (m1+m2)2g2 m1(m1+m2)g2 + . = k2 k1 [答案] D 【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再 ?F 将两者相加,但不如上面解析中直接运用 ?x= 进行计算更快捷方便. k (m1+m2)2g2 ② 通过比 较可知 ,重力势 能的增 加并不 等于向上 提的力 所做的功 W= F ·x 总 = + 2k22 (m1+m2)2g2 . 2k1k2 2.动力学中的弹簧问题

(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹 力也不会发生突变. (2)如图 9-13 所示,将 A、B 下压后撤去外力,弹簧在恢复原长时刻 B 与 A 开始分离.

图 9-13 ●例 5 一弹簧秤秤盘的质量 m1=1.5 kg,盘内放一质量 m2=10.5 kg 的物体 P,弹簧的质量不计,其 劲度系数 k=800 N/m,整个系统处于静止状态,如图 9-14 所示.

图 9-14 现给 P 施加一个竖直向上的力 F,使 P 从静止开始向上做匀加速直线运动,已知在最初 0.2 s 内 F 是 变化的,在 0.2 s 后是恒定的,求 F 的最大值和最小值.(取 g=10 m/s2) 【解析】初始时刻弹簧的压缩量为: (m1+m2)g x0= =0.15 m k 设秤盘上升高度 x 时 P 与秤盘分离,分离时刻有: k(x0-x)-m1g =a m1 又由题意知,对于 0~0.2 s 时间内 P 的运动有: 1 2 at =x 2 解得:x=0.12 m,a=6 m/s2 故在平衡位置处,拉力有最小值 Fmin=(m1+m2)a=72 N 分离时刻拉力达到最大值 Fmax=m2g+m2a=168 N. [答案] 72 N 168 N 【点评】对于本例所述的物理过程,要特别注意的是:分离时刻 m1 与 m2 之间的弹力恰好减为零,下 一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于 a,故秤盘与重物分离. 3.与动量、能量相关的弹簧问题 与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点 结论的应用非常重要: (1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等; (2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物 体的速度相等. ●例 6 如图 9-15 所示, 用轻弹簧将质量均为 m=1 kg 的物块 A 和 B 连接起来, 将它们固定在空中, 弹簧处于原长状态,A 距地面的高度 h1=0.90 m.同时释放两物块,A 与地面碰撞后速度立即变为零,由 于 B 压缩弹簧后被反弹,使 A 刚好能离开地面(但不继续上升).若将 B 物块换为质量为 2m 的物块 C(图中 未画出),仍将它与 A 固定在空中且弹簧处于原长,从 A 距地面的高度为 h2 处同时释放,C 压缩弹簧被反 弹后,A 也刚好能离开地面.已知弹簧的劲度系数 k=100 N/m,求 h2 的大小.

图 9-15 【解析】设 A 物块落地时,B 物块的速度为 v1,则有: 1 mv 2=mgh1 2 1 设 A 刚好离地时,弹簧的形变量为 x,对 A 物块有: mg=kx 从 A 落地后到 A 刚好离开地面的过程中,对于 A、B 及弹簧组成的系统机械能守恒,则有: 1 mv 2=mgx+?Ep 2 1 换成 C 后,设 A 落地时,C 的速度为 v2,则有: 1 ·2mv22=2mgh2 2 从 A 落地后到 A 刚好离开地面的过程中,A、C 及弹簧组成的系统机械能守恒,则有: 1 ·2mv22=2mgx+?Ep 2 联立解得:h2=0.5 m. [答案] 0.5 m 【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上 述结论“①”.如 2005 年高考全国理综卷Ⅰ第 25 题、1997 年高考全国卷第 25 题等. ●例 7 用轻弹簧相连的质量均为 2 kg 的 A、 两物块都以 v=6 m/s 的速度在光滑的水平地面上运动, B 弹簧处于原长,质量为 4 kg 的物块 C 静止在前方,如图 9-16 甲所示.B 与 C 碰撞后二者粘在一起运动, 则在以后的运动中:

图 9-16 甲 (1)当弹簧的弹性势能最大时,物体 A 的速度为多大? (2)弹簧弹性势能的最大值是多少? (3)A 的速度方向有可能向左吗?为什么? 【解析】(1)当 A、B、C 三者的速度相等(设为 vA′)时弹簧的弹性势能最大,由于 A、B、C 三者组成 的系统动量守恒,则有: (mA+mB)v=(mA+mB+mC)vA′ (2+2)×6 解得:vA′= m/s=3 m/s. 2+2+4 (2)B、C 发生碰撞时,B、C 组成的系统动量守恒,设碰后瞬间 B、C 两者的速度为 v′,则有: mBv=(mB+mC)v′ 2×6 解得:v′= =2 m/s 2+4 A 的速度为 vA′时弹簧的弹性势能最大,设其值为 Ep,根据能量守恒定律得: 1 1 1 Ep= (mB+mC)v′2+ mAv2- (mA+mB+mC)vA′2 2 2 2 =12 J.

(3)方法一 A 不可能向左运动. 根据系统动量守恒有:(mA+mB)v=mAvA+(mB+mC)vB 设 A 向左,则 vA<0,vB>4 m/s 则 B、C 发生碰撞后,A、B、C 三者的动能之和为: 1 1 1 2 E′= mAv2 + (mB+mC)v2 > (mB+mC)vB=48 J A B 2 2 2 实际上系统的机械能为: 1 E=Ep+ (mA+mB+mC)vA′2=12 J+36 J=48 J 2 根据能量守恒定律可知,E′>E 是不可能的,所以 A 不可能向左运动. 方法二 B、C 碰撞后系统的运动可以看做整体向右匀速运动与 A、B 和 C 相对振动的合成(即相当于 在匀速运动的车厢中两物块相对振动) 由(1)知整体匀速运动的速度 v0=vA′=3 m/s

图 9-16 乙 取以 v0=3 m/s 匀速运动的物体为参考系,可知弹簧处于原长时,A、B 和 C 相对振动的速率最大,分 别为: vAO=v-v0=3 m/s vBO=|v′-v0|=1 m/s 由此可画出 A、B、C 的速度随时间变化的图象如图 9-16 乙所示,故 A 不可能有向左运动的时刻. [答案] (1)3 m/s (2)12 J (3)不可能,理由略 【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以 3 m/s 匀速行驶的车厢内,A、B 和 C 做相对弹簧上某点的简谐振动,振动的最大速率分别为 3 m/s、1 m/s. ②当弹簧由压缩恢复至原长时,A 最有可能向左运动,但此时 A 的速度为零. ●例 8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分 别为 m 和 4m.笔的弹跳过程分为三个阶段:

图 9-17 ①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图 9-17 甲所示); ②由静止释放,外壳竖直上升到下端距桌面高度为 h1 时,与静止的内芯碰撞(如图 9-17 乙所示); ③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为 h2 处(如图 9-17 丙所示). 设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为 g.求: (1)外壳与内芯碰撞后瞬间的共同速度大小. (2)从外壳离开桌面到碰撞前瞬间,弹簧做的功. (3)从外壳下端离开桌面到上升至 h2 处,笔损失的机械能. [2009 年高考·重庆理综卷] 【解析】设外壳上升到 h1 时速度的大小为 v1,外壳与内芯碰撞后瞬间的共同速度大小为 v2. (1)对外壳和内芯,从撞后达到共同速度到上升至 h2 处,由动能定理得:

1 (4m+m)g(h2-h1)= (4m+m)v2-0 2 2 解得:v2= 2g(h2-h1). (2)外壳与内芯在碰撞过程中动量守恒,即: 4mv1=(4m+m)v2 5 将 v2 代入得:v1= 2g(h2-h1) 4 设弹簧做的功为 W,对外壳应用动能定理有: 1 2 W-4mgh1= ×4mv1 2 1 将 v1 代入得:W= mg(25h2-9h1). 4 (3)由于外壳和内芯达到共同速度后上升至高度 h2 的过程中机械能守恒,只有在外壳和内芯的碰撞中 1 1 有能量损失,损失的能量 E 损= ×4mv2- (4m+m)v2 1 2 2 2 5 将 v1、v2 代入得:E 损= mg(h2-h1). 4 1 [答案] (1) 2g(h2-h1) (2) mg(25h2-9h1) 4 5 (3) mg(h2-h1) 4 由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的 优秀试题. 弹簧与相连物体构成的系统所表现出来的运动状态的变化, 为学生充分运用物理概念和规律(牛 顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提 供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就 成为高考物理题中的一类重要的、独具特色的考题. 四、传送带问题 从 1990 年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代 生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及 力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题 的能力.如 2003 年高考全国理综卷第 34 题、2005 年高考全国理综卷Ⅰ第 24 题等. 对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记: (1)滑块加速过程的位移等于滑块与传送带相对滑动的距离; (2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置 在这一过程需额外(相对空载)做的功 W=mv2=2Ek=2Q 摩. ●例 9 如图 9-18 甲所示,物块从光滑曲面上的 P 点自由滑下,通过粗糙的静止水平传送带后落到 地面上的 Q 点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从 P 点自由滑下, 则( )

图 9-18 甲 A.物块有可能不落到地面上 B.物块仍将落在 Q 点 C.物块将会落在 Q 点的左边 D.物块将会落在 Q 点的右边 【解析】如图 9-18 乙所示,设物块滑上水平传送带上的初速度为 v0,物块与皮带之间的动摩擦因数 为 ?,则:

图 9-18 乙 ?mg 物块在皮带上做匀减速运动的加速度大小 a= =?g m 物块滑至传送带右端的速度为: v= v02-2?gs 1 物块滑至传送带右端这一过程的时间可由方程 s=v0t- ?gt2 解得. 2 当皮带向左匀速传送时,滑块在皮带上的摩擦力也为: f=?mg 物块在皮带上做匀减速运动的加速度大小为: ?mg a1′= =?g m 则物块滑至传送带右端的速度 v′= v02-2?gs=v 1 物块滑至传送带右端这一过程的时间同样可由方程 s=v0t- ?gt2 解得. 2 由以上分析可知物块仍将落在 Q 点,选项 B 正确. [答案] B 【点评】对于本例应深刻理解好以下两点: ①滑动摩擦力 f=?FN,与相对滑动的速度或接触面积均无关; ②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同. 我们延伸开来思考, 物块在皮带上的运动可理解为初速度为 v0 的物块受到反方向的大小为 ?mg 的力 F 的作用,与该力的施力物体做什么运动没有关系. ●例 10 如图 9-19 所示,足够长的水平传送带始终以 v=3 m/s 的速度向左运动,传送带上有一质 量 M=2 kg 的小木盒 A, 与传送带之间的动摩擦因数 ?=0.3. A 开始时, 与传送带之间保持相对静止. A 现 有两个光滑的质量均为 m=1 kg 的小球先后相隔 ?t=3 s 自传送带的左端出发,以 v0=15 m/s 的速度在传 1 送带上向右运动.第 1 个球与木盒相遇后立即进入盒中并与盒保持相对静止;第 2 个球出发后历时 ?t1= 3 s 才与木盒相遇.取 g=10 m/s2,问:

图 9-19 (1)第 1 个球与木盒相遇后瞬间,两者共同运动的速度为多大? (2)第 1 个球出发后经过多长时间与木盒相遇? (3)在木盒与第 1 个球相遇至与第 2 个球相遇的过程中, 由于木盒与传送带间的摩擦而产生的热量是多 少? 【解析】(1)设第 1 个球与木盒相遇后瞬间,两者共同运动的速度为 v1,根据动量守恒定律得: mv0-Mv=(m+M)v1 解得:v1=3 m/s,方向向右. (2)设第 1 个球与木盒的相遇点离传送带左端的距离为 s,第 1 个球经过时间 t0 与木盒相遇,则有: s t0= v0 设第 1 个球进入木盒后两者共同运动的加速度大小为 a,根据牛顿第二定律得: ?(m+M)g=(m+M)a 解得:a=?g=3 m/s2,方向向左 设木盒减速运动的时间为 t1,加速到与传送带具有相同的速度的时间为 t2,则:

?v =1 s a 故木盒在 2 s 内的位移为零 依题意可知:s=v0?t1+v(?t+?t1-t1-t2-t0) 解得:s=7.5 m,t0=0.5 s. (3)在木盒与第 1 个球相遇至与第 2 个球相遇的这一过程中,设传送带的位移为 s′, 木盒的位移为 s1, 则: s′=v(?t+?t1-t0)=8.5 m s1=v(?t+?t1-t1-t2-t0)=2.5 m 故木盒相对于传送带的位移为:?s=s′-s1=6 m 则木盒与传送带间因摩擦而产生的热量为: Q=f?s=54 J. [答案] (1)3 m/s (2)0.5 s (3)54 J 【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法. t1=t2=


赞助商链接

高中物理常见的物理模型1

高中物理常见的物理模型1_高考_高中教育_教育专区。我刚刚下载了《高中物理常见的物理模型1》,内容特别赞, 高中物理常见的物理模型方法概述 高考命题以《考试大纲》...

高中物理常见的物理模型1

高中物理常见的物理模型 、斜面问题 1.自由释放的滑块能在斜面上(如图 9-1 甲所示)匀速下滑时,m 与 M 之间的动摩擦 因数 μ=gtan θ. 2.自由释放的...

高中物理常见的物理模型_附带经典63道压轴题

原子物理、 光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一 道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型...

高中物理常见的物理模型(1)

2011 届高考黄冈中学物理冲刺讲解、练习题、预测题 17:第 9 专题 高中物理常见的物理模型(1) 方法概述高考命题以《考试大纲》为依据,考查学生对高中物理知识的...

高中物理常见的物理模型_图文

高中物理常见的物理模型_理化生_高中教育_教育专区。能力演练一、选择题(10×4...能力演练一、选择题(10×4 分) 1.图示是原子核的核子平均质量与原子序数 Z ...

高中物理常见的物理模型-附带经典63道压轴题_图文

原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题 的可能性较大. (3)试卷中下列常见的物理模型...

高中物理常见物理模型

高中物理常见的物理模型 方法概述高考命题以《考试大纲》为依据,考查学生对高中...江苏物理卷第 7 题和第 15 题等.在前面的复习中,我们对这一模型的例举和...

高中物理常见的物理模型易错题归纳总结

高中物理常见的物理模型易错题归纳总结一、斜面问题 1.自由释放的滑块能在斜面上(如图 9-1 甲所示)匀速下滑时,m 与 M 之间的动摩擦因数 μ= gtan θ. 图 ...

第9专题 高中物理常见的物理模型

第9 专题 高中物理常见的物理模型 方法概述高考命题以《考试大纲》为依据,考查...(线框的 ab 边在运动过程中始终与磁场边界平行,不计摩擦阻力) 【解析】(1)...

专题高中物理常见的物理模型

专题、斜面问题 高中物理常见的物理模型 1.自由释放的滑块能在斜面上(如图 9-1 甲所示)匀速下滑时,m 与 M 之间的动摩擦因数 μ=gtan θ. 图 9-1 甲 ...