nbhkdz.com冰点文库

2.3.1数学归纳法(1)


2.3.1数学归纳法
(第一课时)

对于某类事物,由它的一些特殊事 例或其全部可能情况,归纳出一般 结论的推理方法,叫归纳法.
归纳法

{ 不完全归纳法
一般 an=a1+(n-1)d

完全归纳法

特点: 由特殊 a2=a1+d a3=a1+2d a4=a1+3

d
……

如何证明:1+3+5+…+(2n-1)=n2

(n∈N*)

二、数学归纳法的概念:
证明某些与自然数有关的数学题,可用下列方法 来证明它们的正确性: (1)验证当n取第一个值n0(例如n0=1)时命题成立, (2)假设当n=k(k?N* ,k?n0 )时命题成立, 证明当n=k+1时命题也成立 完成这两步,就可以断定这个命题对从n0开始的所 有正整数n都成立.这种证明方法叫做数学归纳法. 验证n=n0时命 题成立 若当n=k(k?n0 )时命题成立, 证明当n=k+1时命题也成立

命题对从n0开始的所 有正整数n都成立.

例:已知数列{a n }为等差,公差为d,
求证:通项公式为a n = a1 +(n -1)d 证明:

1)当n = 1式,a1 = a1 +(1-1)d = a1 ,结论成立
2)假设n = k式结论成立,即a k = a1 +(k -1)d ? 那么 ∵ a k+1 = a k + d ∴ a k+1 = a1 +(k -1)d + d ? ? ? = a1 + kd = a1 +[(k +1)-1]d ? ?所以n=k+1时结论也成立 ? 综合1)、2)知a n = a1 +(n -1)d成立.

练习:已知数列{a n }为等比数列, 公比为q,求证:通项公式为a n = a1q (提示:a n = qa n-1)
注意 1. 用数学归纳法进行证明时,要分两个 步骤,两个步骤缺一不可. 2 (1)(归纳奠基)是递推的基础. 找准n0 (2)(归纳递推)是递推的依据 n=k时 命题成立.作为必用的条件运用,而n=k+1 时情况则有待利用假设及已知的定义、公式、 定理等加以证明
n-1

例、用数学归纳法证明1+3+5+……+(2n-1)=n2
?

(n∈N ).

?

证明:①当n=1时,左边=1,右边=1,等式成立. ②假设n=k(k∈N ,k≥1)时等式成立,即: 1+3+5+……+(2k-1)=k2, 当n=k+1时: 1+3+5+……+(2k-1)+[2(k+1)-1]=k2+2k+1=(k+1)2, 所以当n=k+1时等式也成立. 由①和②可知,对n∈N ,原等式都成立.
?

请问: 第②步中“当n=k+1时”的证明可否改换为:

1+3+5+……+(2k-1)+[2(k+1)-1]= 1+3+5+……+(2k-1)+(2k+1)
= (k +1)[1+ (2k +1)] = (k+1)2 ?为什么?
2

例:用数学归纳法证明
n(n +1)(2n +1) 1 + 2 + 3 +?+ n = 6
2 2 2 2

注意 1. 用数学归纳法进行证明时,要分两个 步骤,两个步骤缺一不可. 2 (1)(归纳奠基)是递推的基础. 找准n0 (2)(归纳递推)是递推的依据 n=k时 命题成立.作为必用的条件运用,而n=k+1 时情况则有待利用假设及已知的定义、公式、 定理等加以证明

例、求证:(n+1)(n+2)…(n+n)=2n? 1? 3?… ?(2n-1)
证明:① n=1时:左边=1+1=2,右边=21?1=2,左边=右边,等 式成立. ? ② 假设当n=k((k∈N )时有: (k+1)(k+2)…(k+k)=2k? 1? 3?…? (2n-1), 当n=k+1时: 左边=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
( 2k+1)(2k+2) =(k+1)(k+2)(k+3)…(k+k)? k+1

= 2k? 1? 3?…?(2k-1)(2k+1)?2 = 2k+1?1? 3?…? (2k-1) ?[2(k+1)-1]=右边, ∴当n=k+1时等式也成立. ? 由 ①、②可知,对一切n∈N ,原等式均成立.


新课标人教A版选修2-2《2.3.1数学归纳法及其应用举例》...

新课标人教A版选修2-2《2.3.1数学归纳法及其应用举例》获奖教学设计(含教学设计说明)_高二数学_数学_高中教育_教育专区。《数学归纳法及其应用举例》教学设计重庆...

...数学(新课标人教A版)选修2-2《2.3.1数学归纳法》导...

高中新课程数学(新课标人教A版)选修2-2《2.3.1数学归纳法》导学案_数学_高中教育_教育专区。§ 2.3 数学归纳法(1) 学习目标 1. 了解数学归纳法的原理,并...

2.3 数学归纳法 学案(人教A版选修2-2)

2.3 数学归纳法 问题导学 一、用数学归纳法证明等式 活动与探究 1 (1)数学归纳法证明对任何正整数 n 有 1 1 1 1 1 n +++?+ 2 =. 3 15 35 63...

数学:2.3.1《数学归纳法》教案(新人教B版选修2-2)

数学:2.3.1数学归纳法》教案(新人教B版选修2-2)_高二数学_数学_高中教育...3,用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当 n 取第一...

2.2.3 数学归纳法(拓展)

1 中,如果 不是 1,而是 2,那么就不可能得出 2.3 数学归纳法课前预习学案...a1 ? (n ? 1)d 对任何 n∈ N ( 上升为理性认识; * 都成立. 点评:...

2.3数学归纳法

2.3 数学归纳法教材分析数学归纳法是一种重要的数学证明方法,在高中数学内容中...教学目标 1. 知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确,...

用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k...

单选题 数学 数学归纳法证明不等式 用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是( ) A2k+2 B2k+3...

用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,...

解:用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时, 假设n=k时成立,即1+2+3+…+(2k+1)=(k+1)(2k+1), 那么,当n-k+1时,左边=1+...

...4=-(1+2)1-4+9=1+2+31-4+9-16=-(1+2+3+4)…(1)写出...

给出四个等式:1=11-4=-(1+2)1-4+9=1+2+31-4+9-16=-(1+2+3+4)…(1)写出第5,6个等式,并猜测第n(n∈N*)个等式;(2)用数学归纳法证明你...

选修(2-2)2.3数学归纳法

时间:两课时山东省桓台第一中学 课题:选修(2-2)2.3 数学归纳法三维目标: 1、知识与技能 (1) 通过实例及合作探究,了解数学归纳法的产生过程,并理解数学归纳法...