nbhkdz.com冰点文库

2.1.1指数与指数幂的运算2


指数与分数指数幂 ( 2)

复习:1、判断下列说法是否正确:
(1)-2是16的四次方根;

(2)正数的n次方根有两个;
(3)a 的n次方根是
n

a;

n n ( 4) a ? a(a ? 0). 解:(1)正确; (2)不正确;

(3

)不正确;(4)正确。

初中已学过整数指数幂,知道:

a ? a ? a ????? a
n

(n?N*)

n个 a0 =1 (a ≠0)
?n

a

1 ? ? n ( a ? 0, n ? N ). a

整数指数幂的运算性质:
m (1)、a . n a = m n + a mn a (a?0,m,n∈Z ) (a?0,n,m∈Z ) m n (2)、(a )

=

n n n (3)、(ab) =a b

(a?0,b?0,n∈Z )

下面讨论根式 m (a>0) n a
与幂的关系 先看几个实例

(1) a

4

12

? (a ) ? a .
4 3 4 3

指数间有关系:
12 3? , 4
12 4

可以认为

4

a =a

12

.

(2)(2 ) =2 ? 2 =2 ,
5 2 10 10 5

10 10      5= ? 2 =2 。 2
5 15 15 5

10 2

( 3 )3 = 3 .

定义正数a的分数指数幂意义是:

a
a

m n
m ? n

?
?

n

a

m

1
n

(m、n∈N*且n>1)
0的正分数指数幂等于0; 0的负分数指数幂没有意义。

a

m

这样,指数的概念就由整数指数幂推广 到了分数指数幂,统称有理数指数幂。 可以证明,整数指数幂的运算法则对有 理指数幂也成立,即有理指数幂有如下的运 算法则:

(1)、ar· as=ar+s r s rs (2)、 (a ) =a r r r (3)、 (a· b) =a · b 其中a>0, b>0 且r, s?Q 。

例1、a为正数,用分数指数幂表 示下列根式:

(1)

6

a ; ( 2)
3

4

1
3

a
3

2

; a

(3)

a 2 a

2

; ( 4)

a

解:(1)6 a 4 ? a ;

2 3

解: (2)

1
3

a

2

?a

2 ? 3

;

解:
3

(3)

a 2 a

2

? a ?a

2 3

?2

?a
?a

2 ?2 3
5 ? 3

;

解: (4) a ? a
3

1 2

? (a ? a )
3 2 1 3

1 2

1 3 1 2

? (a ) ? a .

口答: 1、用根式表示下列各式:
(1)

( a > 0 )
3 ? 5

a
5

1 5

(2)

a
4

3 4

(3)
3

a

(4) a
3

?

2 3

1
5

a

a

a

1
3

2、用分数指数幂表示下列各式:

a2

(1)

4

( a ? b ) 3 ( a ? b ? 0) ( 2 )

3

(a ? b)
(3)

3 4

( m ? n) 2
2 3

( m ? n)

( m ? n) 4 ( m ? n) ( 4 )

p 6 ? q 5 ( p ? 0)

( m ? n)

2

p3 ? q

5 2

例2、利用分数指数幂的运算法则 计算下列各式:

(1)0.001 ; (2)64 1 ? 256 =100 2
(3)27 ;
3

2 ? 3

4 ? 3

;

?9

(4)4 ? 4 ? 4 ? 4.
3 6

=16

解:

(1)0.001
?3 2 ? 3

2 ? 3

? (10 )
2

? 10

2 ( ?3)?( ? ) 3

? 1 0 =100

(2)64 ;

4 ? 3

? (4 )

4 ? 3 3

?4

?4

1 ? 256

(3)27

2 3

?3

2 3? 3

?3 ? 9
2

(4)4 ? 4 ? 4 ? 4.
3 6
1 6

? 4 ?4 ?4 ?4
1

1 2

1 3

?4

1 1 1 1? ? ? 2 3 6

?4

2

=16

例3 化简(a>0,x>0,r?Q):

(1)(a x ) ? (a x
2 3

1 6

1 3

1 ? 2

) ;

?1

(2)( a )

3

15 ? r

1 r ?( ) . a

(1)(a x ) ? (a x
2 3

1 6

1 3

1 ? 2

)
1 2

?1

? (a x )(a
?a
1 1 ? 3 3

2 6

3 6

1 ? 3

x )

x

1 1 ? 2 2

?a x ?x
0 1

(2)( a )
? a ?a

3

15 ? r

15 ? r 3

a

r ? 2

1 r ?( ) a
5 5? r 6

r r 5? ? 3 2

?a

.

练一练:书本P54 第3题

探究:无理数指数幂的意义
思考1:我们知道 2 =1.414 21356…, 那么 5 2 的大小如何确定?

2 的过剩近似值

5

2

的过剩近似值

1.5 1.42 1.415 1.414 3 1.414 22 1.414 214 1.414 213 6 1.414 213 57 1.414 213 563

11.180 339 89 9.829 635 328 9.750 851 808 9.739 872 62 9.738 618 643 9.738 524 602 9.738 518 332 9.738 517 862 9.738 517 752

5

2

的不足近似值 269 669 171 305 461 508 516 517 517
5
2

2 的不足近似值

9.518 9.672 9.735 9.738 9.738 9.738 9.738 9.738 9.738

694 973 039 174 907 928 765 705 736

1.4 1.41 1.414 1.414 2 1.414 21 1.414 213 1.414 213 5 1.414 213 56 1.414 213 562
2

一般地,无理数指数幂 a ( a >0,? 是无 理数)是一个确定的实数. 有理数指数幂的运 算性质同样适用于无理数指数幂.
?

小结: 1、n次根式的定义及有关概念; 2、幂的运算性质可以从整数指数推广到 有理数指数,再推广到实数指数的形式; 3、用分数指数表示根式的目的是为将根式 运算转化为指数运算;

4. a 是

m n

的一种新的写法,分数指数幂 与根式表示相同意义的量,只是形式 上的不同而已.
n

am

作业:
? 教材P59习题2.1A组:2、4(5)-(8)


2.1.1 指数与指数幂的运算(练习)

2.1.1 指数与指数幂的运算(练习)_高中教育_教育专区。§2.1.1 指数与指数幂的运算(练习) 学习目标 1. 掌握 n 次方根的求解; 2. 会用分数指数幂表示...

2.1.1指数与指数幂的运算练习题(整理)

2.1.1指数与指数幂的运算练习题(整理)_数学_高中教育_教育专区。指数幂、指数函数、对数、对数函数练习 一、选择题 1、下列以 x 为自变量的函数中,是指数函数...

高中数学必修一第二章2.1.1指数与指数幂的运算习题(含...

高中数学必修一第二章2.1.1指数与指数幂的运算习题(含答案)_高一数学_数学_高中教育_教育专区。2.1.1 指数与指数幂的运算知识清单 1.如果一个实数 x 满足_...

§2.1.1 指数与指数幂的运算(1)

§2.1.1 指数与指数幂的运算(1)_高一数学_数学_高中教育_教育专区。§ 2.1.1 指数与指数幂的运算(1)学习目标 1. 了解指数函数模型背景及实用性、必要性;...

指数与指数幂的运算习题(带答案)-数学高一上必修1第二...

指数与指数幂的运算习题(带答案)-数学高一上必修1第二章2.1.1人教版_数学_高中教育_教育专区。指数与指数幂的运算习题与答案-数学高一上必修1第二章2.1.1...

2.1.1指数与指数幂的运算导学案(2)

2.1.1指数与指数幂的运算导学案(2)_高一数学_数学_高中教育_教育专区。必修一导学案§2.1.1 指数与指数幂的运算(第二课时)学习目标 1. 进一步理解分数指数...

示范教案(2.1.1 指数与指数幂的运算 第1课时)

示范教案(2.1.1 指数与指数幂的运算 第1课时)_数学_高中教育_教育专区。指数与指数幂的运算 第二章 基本初等函数(Ⅰ) 2.1.1 指数与指数幂的运算 第 1 ...

2.1.1-指数与指数幂的运算(30

2.1.1-指数与指数幂的运算(30_数学_高中教育_教育专区。第 3 课时 指数与指数幂的运算(3) 导入新课 思路 1. 同学们,既然我们把指数从正整数推广到整数 ,...

2.1.1指数与指数幂的运算(2课时)

棠中优教网校教学设计方案课 2.1.1 指数与指数幂的运算 题课 2 课时 时课 1.了解指数函数模型的实际背景. 程 2.理解有理指数幂的含义,通过具体实例了解...

人教A版高中数学必修一2.1.1(1)指数与指数幂的运算

人教A版高中数学必修一2.1.1(1)指数与指数幂的运算_数学_高中教育_教育专区。人教A版高中数学必修一2.1.1(1)指数与指数幂的运算2...