nbhkdz.com冰点文库

【步步高】2017版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.1 合情推理与演绎推理 文

时间:2016-07-11


【步步高】 (江苏专用)2017 版高考数学一轮复习 第十二章 推理与 证明、算法、复数 12.1 合情推理与演绎推理 文

1.合情推理 (1)归纳推理 ①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法). ②特点:归纳推理是由部分到整体、由个别到一般的推理. (2)类比推理 ①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相 似或相同,像这样的推理通常称为类比推理(简称类比法). ②特点:类比推理是由特殊到特殊的推理. (3)合情推理 合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推 测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理. 2.演绎推理 (1)演绎推理 一种由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一 般到特殊的推理. (2)“三段论”是演绎推理的一般模式 ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况做出的判断. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )

(4)“所有 3 的倍数都是 9 的倍数,某数 m 是 3 的倍数,则 m 一定是 9 的倍数”,这是三段论 推理,但其结论是错误的.( √ )

1

(5)一个数列的前三项是 1,2,3,那么这个数列的通项公式是 an=n(n∈N ).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )

*

1.观察下列各式:a+b=1,a +b =3,a +b =4,a +b =7,a +b =11,?,则 a +b =________. 答案 123

2

2

3

3

4

4

5

5

10

10

解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值 等于它前面两个式子右端值的和,依据此规律,a +b =123. 2. 命题“有些有理数是无限循环小数, 整数是有理数, 所以整数是无限循环小数”是假命题, 推理错误的原因是________. ①使用了归纳推理; ②使用了类比推理; ③使用了“三段论”,但推理形式错误; ④使用了“三段论”,但小前提错误. 答案 ③ 解析 由“三段论”的推理方式可知,该推理的错误原因是推理形式错误. 3.(2014·福建)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2,②b=2,③c≠0 有且只有一个正确,则 100a+10b+c=________. 答案 201 解析 因为三个关系中只有一个正确,分三种情况讨论:若①正确,则②③不正确,得到
10 10

a≠2, ? ? ?b≠2, ? ?c=0,

由于集合{a,b,c}={0,1,2},所以解得 a=b=1,c=0,或 a=1,b=c=0,

或 b=1,a=c=0,与互异性矛盾;

b=2, ? ? 若②正确,则①③不正确,得到?a=2, ? ?c=0, c≠0, ? ? 若③正确,则①②不正确,得到?a=2, ? ?b≠2,
=201.

与互异性矛盾;

a=2, ? ? 则?b=0, ? ?c=1,

符合题意,所以 100a+10b+c

4.在平面上,若两个正三角形的边长的比为 1∶2,则它们的面积比为 1∶4,类似地,在空 间中,若两个正四面体的棱长比为 1∶2,则它们的体积比为__________.
2

答案 1∶8 解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正 四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为 1∶8. 5.(教材改编)在等差数列{an}中,若 a10=0,则有 a1+a2+?+an=a1+a2+?+a19-n (n<19,

n∈N*)成立, 类比上述性质, 在等比数列{bn}中, 若 b9=1, 则 b1b2b3b4?bn=________________.
答案 b1b2b3b4?b17-n (n<17,n∈N )
*

题型一 归纳推理 命题点 1 与数字有关的等式的推理 例 1 (2015·陕西)观察下列等式: 1 1 1- = , 2 2 1 1 1 1 1 1- + - = + , 2 3 4 3 4 1 1 1 1 1 1 1 1 1- + - + - = + + , 2 3 4 5 6 4 5 6 ?, 据此规律,第 n 个等式可为____________________________________________. 1 1 1 1 1 1 1 1 答案 1- + - +?+ - = + +?+ 2 3 4 2n-1 2n n+1 n+2 2n 解析 等式左边的特征:第 1 个等式有 2 项,第 2 个有 4 项,第 3 个有 6 项,且正负交错, 1 1 1 1 1 故第 n 个等式左边有 2n 项且正负交错, 应为 1- + - +?+ - ; 等式右边的特征: 2 3 4 2n-1 2n 第 1 个有 1 项,第 2 个有 2 项,第 3 个有 3 项,故第 n 个有 n 项,且由前几个的规律不难发 现第 n 个等式右边应为 1 1 1 + +?+ . n+1 n+2 2n

命题点 2 与不等式有关的推理 1 4 x x 4 27 x x x 例 2 已知 x∈(0,+∞),观察下列各式:x+ ≥2,x+ 2= + + 2≥3,x+ 3 = + + x x 2 2 x x 3 3 3 27 a * + 3 ≥4,?,类比得 x+ n≥n+1(n∈N ),则 a=________.

x

x

答案 n

n

解析 第一个式子是 n=1 的情况,此时 a=1 =1;第二个式子是 n=2 的情况,此时 a=2 =4;第三个式子是 n=3 的情况,此时 a=3 =27,归纳可知 a=n .
3

1

2

n

3

命题点 3 与数列有关的推理 例 3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数 1,3,6,10,?,第

n?n+1? 1 2 1 n 个三角形数为 = n + n,记第 n 个 k 边形数为 N(n,k)(k≥3),以下列出了部分
2 2 2

k 边形数中第 n 个数的表达式:
三角形数 正方形数 五边形数 六边形数 ??????????????? 可以推测 N(n,k)的表达式,由此计算 N(10,24)=____________. 答案 1 000 解析 由 N(n,4)=n ,N(n,6)=2n -n,可以推测:当 k 为偶数时,N(n,k)=
2 2

N(n,3)= n2+ n, N(n,4)=n2, N(n,5)= n2- n, N(n,6)=2n2-n
3 2 1 2

1 2

1 2

k-2 2 4-k n+
2 2

n,
24-2 4-24 ∴N(10,24)= ×100+ ×10 2 2 =1 100-100=1 000. 命题点 4 与图形变化有关的推理 例 4 某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为 1,两两 1 夹角为 120°; 二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来 的 3 线段,且这两条线段与原线段两夹角为 120°,?,依此规律得到 n 级分形图.

(1)n 级分形图中共有________条线段; (2)n 级分形图中所有线段长度之和为________.

?2?n n 答案 (1)3×2 -3 (2)9-9×? ? ?3?
解析 (1)分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图中有 3=
2 3

(3×2-3)条线段,二级分形图中有 9=(3×2 -3)条线段,三级分形图中有 21=(3×2 -3) 条线段,按此规律 n 级分形图中的线段条数 an=(3×2 -3) (n∈N ).
n
*

4

1 (2)∵分形图的每条线段的末端出发再生成两条长度为原来 的线段,∴n 级分形图中第 n 级 3

?2?n-1 (n∈N*),∴n 级分形图中所有线段长度之和为 S = 的所有线段的长度和为 bn=3×? ? n ?3? ?2?0 ?2?1 ?2?n-1 3×? ? +3×? ? +?+3×? ? =3× ?3? ?3? ?3? ?2?n 1-? ? ? 3? ?2?n =9-9×? ? . 2 ?3? 1- 3

思维升华 归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项 数的关系,列出即可. (4)与图形变化有关的推理. 合理利用特殊图形归纳推理得出结论, 并用赋值检验法验证其真 伪性. (1)观察下图,可推断出“x”处应该填的数字是________.

(2)如图,有一个六边形的点阵,它的中心是 1 个点(算第 1 层),第 2 层每边 有 2 个点, 第 3 层每边有 3 个点,?, 依此类推,如果一个六边形点阵共有 169 个点,那么它的层数为________. 答案 (1)183 (2)8 解析 (1)由前两个图形发现:中间数等于四周四个数的平方和,∴“x”处应填的数字是 3 +5 +7 +10 =183. (2)由题意知,第 1 层的点数为 1,第 2 层的点数为 6,第 3 层的点数为 2×6,第 4 层的点数 为 3×6,第 5 层的点数为 4×6,?,第 n(n≥2,n∈N )层的点数为 6(n-1).设一个点阵有
* 2 2 2 2

n(n≥2,n∈N*)层,则共有的点数为 1+6+6×2+?+6(n-1)=1+
2 2

6+6?n-1? ×(n-1) 2

=3n -3n+1,由题意得 3n -3n+1=169,即(n+7)·(n-8)=0,所以 n=8,故共有 8 层. 题型二 类比推理 例5 已知数列{an}为等差数列,若 am=a,an=b(n-m≥1,m,n∈N ),则 am+n=
* *

nb-ma .类 n-m

比等差数列{an}的上述结论,对于等比数列{bn}(bn>0,n∈N ),若 bm=c,bn=d(n-m≥2,m,

n∈N*),则可以得到 bm+n=________.

5

答案

n-m dn cm

解析 设数列{an}的公差为 d,数列{bn}的公比为 q. 因为 an=a1+(n-1)d,bn=b1q
n-1

,am+n=

nb-ma , n-m

所以类比得 bm+n=

n-m dn . cm

思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜 想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低 维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的 类比等. 在平面上,设 ha,hb,hc 是三角形 ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为 Pa,Pb,Pc,我们可以得到结论: + + =1.把它类比到空间, 则三棱锥中的类似结论为______________________. 答案

Pa Pb Pc ha hb hc

Pa Pb Pc Pd + + + =1 ha hb hc hd

解析 设 ha,hb,hc,hd 分别是三棱锥 A-BCD 四个面上的高,P 为三棱锥 A-BCD 内任一点,

Pa Pb Pc Pd P 到相应四个面的距离分别为 Pa,Pb,Pc,Pd,于是可以得出结论: + + + =1. ha hb hc hd
题型三 演绎推理 例 6 数列{an}的前 n 项和记为 Sn,已知 a1=1,an+1= (1)数列? ?是等比数列;
?n? ?Sn?

n+2 Sn (n∈N*).证明: n

(2)Sn+1=4an. 证明 (1)∵an+1=Sn+1-Sn,an+1=

n+2 Sn, n

∴(n+2)Sn=n(Sn+1-Sn),即 nSn+1=2(n+1)Sn. ∴

Sn+1 Sn S1 =2· ,又 =1≠0,(小前提) n+1 n 1
?Sn? ?n?

故? ?是以 1 为首项,2 为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知

Sn+1 Sn-1 =4· (n≥2), n+1 n-1

6

∴Sn+1=4(n+1)·

Sn-1 n-1+2 =4· ·Sn-1 n-1 n-1

=4an(n≥2),(小前提) 又 a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提) ∴对于任意正整数 n,都有 Sn+1=4an.(结论) (第(2)问的大前提是第(1)问的结论以及题中的已知条件) 思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和 结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可 找一个使结论成立的充分条件作为大前提. 某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参 议员先生是鹅.”结论显然是错误的,是因为________. ①大前提错误; ③推理形式错误; 答案 ③ 解析 因为大前提的形式“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员 先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三 段论推理形式,所以推理形式错误. ②小前提错误; ④非以上错误.

10.高考中的合情推理问题

典例 (1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研 究过如图所示的三角形数:

将三角形数 1,3,6,10,?记为数列{an},将可被 5 整除的三角形数按从小到大的顺序组成一 个新数列{bn},可以推测: ①b2 014 是数列{an}的第________项; ②b2k-1=________.(用 k 表示) (2)设 S,T 是 R 的两个非空子集,如果存在一个从 S 到 T 的函数 y=f(x)满足:(1)T= {f(x)|x∈S};(2)对任意 x1,x2∈S,当 x1<x2 时,恒有 f(x1)<f(x2).那么称这两个集合“保 序同构”.以下集合对不是“保序同构”的是________. ①A=N ,B=N; ②A={x|-1≤x≤3},B={x|x=-8 或 0<x≤10};
7
*

③A={x|0<x<1},B=R; ④A=Z,B=Q. 解析 (1)①an=1+2+?+n=

n?n+1?
2



b1= b2= b3= b4= b5= b6=
?

4×5 =a4, 2 5×6 =a5, 2 9×?2×5? =a9, 2 ?2×5?×11 =a10, 2 14×?3×5? =a14, 2 ?3×5?×16 =a15, 2

b2 014=

?2 014×5??2 014×5+1? ? 2 ?? 2 ? ? ?? ?
2

=a5 035.

②由①知

b2k-1=

?2k-1+1×5-1??2k-1+1×5? ? ?? ? 2 2 ? ?? ? 5k?5k-1?
2
*



2
*

.

(2)对于①,取 f(x)=x-1,x∈N ,所以 A=N ,B=N 是“保序同构”的,故①是;对于②, -8,x=-1, ? ? 取 f(x)=?x+1,-1<x≤0, ? ?x2+1,0<x≤3,

所以 A={x|-1≤x≤3}, B={x|x=-8 或 0<x≤10}是“保

序同构”的,故②是;对于③,取 f(x)=tan(π x-

π )(0<x<1),所以 A={x|0<x<1},B=R 2

是“保序同构”的,故③是.④不符合,不是保序同构. 5k?5k-1? 答案 (1)①5 035 ② (2)④ 2 温馨提醒 (1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些 特殊情况再进行归纳. (2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.

8

[方法与技巧] 1.合情推理的过程概括为 从具体问题出发 ― → 观察、分析、比较、联想 ― → 归纳、类比 ― → 提出猜想 2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的 推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行. [失误与防范] 1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明. 2. 演绎推理是由一般到特殊的证明, 它常用来证明和推理数学问题, 注意推理过程的严密性, 书写格式的规范性. 3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.

A 组 专项基础训练 (时间:40 分钟) 1.下列推理是归纳推理的是________. ①A,B 为定点,动点 P 满足 PA+PB=2a>AB,则 P 点的轨迹为椭圆; ②由 a1=1,an=3n-1,求出 S1,S2,S3,猜想出数列的前 n 项和 Sn 的表达式;

x2 y2 ③由圆 x +y =r 的面积 π r ,猜想出椭圆 2+ 2=1 的面积 S=π ab; a b
2 2 2 2

④科学家利用鱼的沉浮原理制造潜艇. 答案 ② 解析 从 S1,S2,S3 猜想出数列的前 n 项和 Sn,是从特殊到一般的推理,所以②是归纳推理. 2.正弦函数是奇函数,f(x)=sin(x +1)是正弦函数,因此 f(x)=sin(x +1)是奇函数,以 上推理________. ①结论正确; ③小前提不正确; 答案 ③ 解析 f(x)=sin(x +1)不是正弦函数,所以小前提错误. 3. 平面内有 n 条直线, 最多可将平面分成 f(n)个区域, 则 f(n)的表达式为 f(n)=__________. 答案
2 2 2

②大前提不正确; ④全不正确.

n2+n+2
2

解析 1 条直线将平面分成 1+1 个区域;2 条直线最多可将平面分成 1+(1+2)=4 个区域; 3 条直线最多可将平面分成 1+(1+2+3)=7 个区域;??;n 条直线最多可将平面分成 1+
9

(1+2+3+?+n)=1+

n?n+1? n2+n+2
2 = 2

个区域.

4.给出下列三个类比结论: ①(ab) =a b 与(a+b) 类比,则有(a+b) =a +b ; ②loga(xy)=logax+logay 与 sin(α +β )类比,则有 sin(α +β )=sin α sin β ; ③(a+b) =a +2ab+b 与(a+b) 类比,则有(a+b) =a +2a·b+b . 其中正确结论的个数是________. 答案 1 解析 (a+b) ≠a +b (n≠1,a·b≠0),故①错误. sin(α +β )=sin α sin β 不恒成立. 如 α =30°,β =60°,sin 90°=1,sin 30°·sin 60°= 故②错误. 由向量的运算公式知③正确. 5.若数列{an}是等差数列,则数列{bn}(bn= 3 , 4
n n n
2 2 2 2 2 2 2

n

n n

n

n

n

n

a1+a2+?+an )也为等差数列.类比这一性质可 n

知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则 dn 的表达式应为__________. ①dn=

c1+c2+?+cn n
n n n n c1 +c2+?+cn n

②dn=

c1·c2·?·cn n n

③dn=

④dn= c1·c2·?·cn

答案 ④ 解析 若{an}是等差数列,则 a1+a2+?+an=na1+

n?n-1? d,
2

?n-1? d d ∴bn=a1+ d= n+a1- ,即{bn}为等差数列; 2 2 2 若{cn}是等比数列, 则 c1·c2·?·cn=c1·q
n
1+2+?+(n-1)

=c1· q

n

n ( n ?1) 2



∴dn= c1·c2·?·cn=c1·q 6.观察下列不等式: 1 3 1+ 2< , 2 2 1 1 5 1+ 2+ 2< , 2 3 3

n

n ?1 2

,即{dn}为等比数列.

10

1 1 1 7 1+ 2+ 2+ 2< , 2 3 4 4 ?? 照此规律,第五个不等式为________________________. 1 1 1 1 1 11 答案 1+ 2+ 2+ 2+ 2+ 2< 2 3 4 5 6 6 解析 观察每行不等式的特点,每行不等式左端最后一个分数的分母的开方与右端值的分母 相等,且每行右端分数的分子构成等差数列. 1 1 1 1 1 11 故第五个不等式为 1+ 2+ 2+ 2+ 2+ 2< . 2 3 4 5 6 6

x2 y2 7.若 P0(x0,y0)在椭圆 2+ 2=1(a>b>0)外,过 P0 作椭圆的两条切线的切点为 P1,P2,则切点 a b
弦 P1P2 所在的直线方程是

x0x y0y + =1,那么对于双曲线则有如下命题:若 P0(x0,y0)在双曲线 a2 b2

x2 y2 - =1(a>0,b>0)外,过 P0 作双曲线的两条切线,切点为 P1,P2,则切点弦 P1P2 所在直线 a2 b2
的方程是________________. 答案

x0x y0y - =1 a2 b2

解析 设 P1(x1,y1),P2(x2,y2), 则 P1,P2 的切线方程分别是

x1x y1y x2x y2y 2 - 2 =1, 2 - 2 =1. a b a b
因为 P0(x0,y0)在这两条切线上, 故有

x1x0 y1y0 x2x0 y2y0 - 2 =1, 2 - 2 =1, a b a2 b x0x y0y - =1 上, a2 b2

这说明 P1(x1,y1),P2(x2,y2)在直线 故切点弦 P1P2 所在的直线方程是 8.已知等差数列{an}中,有

x0x y0y - =1. a2 b2
10 = 30 ,则在等比数列{bn}中,会有

a11+a12+?+a20 a1+a2+?+a30

类似的结论:______________________. 答案 10

b11b12?b20=

30

b1b2?b30

解析 由等比数列的性质可知

b1b30=b2b29=?=b11b20,

11



10

b11b12?b20=

30

b1b2?b30.

1 9.设 f(x)= x ,先分别求 f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想 3+ 3 一般性结论,并给出证明. 1 1 解 f(0)+f(1)= 0 + 1 3+ 3 3+ 3 = 1 3-1 3- 3 3 + = + = , 2 6 3 1+ 3 3+ 3 3 , 3 1

同理可得:f(-1)+f(2)=

f(-2)+f(3)=

3 ,并注意到在这三个特殊式子中,自变量之和均等于 1. 3

归纳猜想得:当 x1+x2=1 时, 均有 f(x1)+f(x2)= 3 . 3

证明:设 x1+x2=1,

f ( x1 ) ? f ( x2 ) ?

1 1 ? x 2 3 ? 3 3 ? 3
x1

? ?

(3x1 ? 3) ? (3x2 ? 3) 3x1 ? 3x2 ? 2 3 ? (3x1 ? 3)(3x2 ? 3) 3x1 ? x2 ? 3(3x1 ? 3x2 ) ? 3 3x1 ? 3x2 ? 2 3 3x1 ? 3x2 ? 2 3 3 ? ? . x1 x2 x1 x2 3(3 ? 3 ) ? 2 ? 3 3(3 ? 3 ? 2 3) 3
1

10.在 Rt△ABC 中,AB⊥AC,AD⊥BC 于 D,求证:

AD

2



1

AB

2



1

AC2

,那么在四面体 A—BCD 中,

类比上述结论,你能得到怎样的猜想,并说明理由. 解 如图所示,由射影定理得

AD2=BD·DC,AB2=BD·BC, AC2=BC·DC,
∴ = 1

AD2 BD·DC BC2 BC2 = 2 . BD·BC·DC·BC AB ·AC2
2 2 2



1

又 BC =AB +AC , ∴ 1

AD

2



AB2+AC2 1 1 . 2 2= 2+ AB ·AC AB AC2

12

猜想,四面体 A—BCD 中,AB、AC、AD 两两垂直,AE⊥平面 BCD,则 证明: 如图,连结 BE 并延长交 CD 于 F,连结 AF. ∵AB⊥AC,AB⊥AD,

1

AE

2



1

AB

2



1

AC

2



1

AD2

.

AC∩AD=D, AC? 平面 ACD,AD? 平面 ACD,
∴AB⊥平面 ACD. ∵AF? 平面 ACD,∴AB⊥AF. 在 Rt△ABF 中,AE⊥BF,∴ 在 Rt△ACD 中,AF⊥CD,∴ ∴ 1 = 1 + 1 + 1 . B 组 专项能力提升 (时间:30 分钟) 1 1

AE2 AB2 AF2 AF
2

= =

1 1

+ +

1 1

. ,

AC

2

AD2

AE

2

AB

2

AC

2

AD2

S1 1 11. 在平面几何中有如下结论:正三角形 ABC 的内切圆面积为 S1,外接圆面积为 S2, 则 = , S2 4
推广到空间可以得到类似结论:已知正四面体 P—ABC 的内切球体积为 V1,外接球体积为 V2, 则 =________. 答案 1 27

V1 V2

解析 正四面体的内切球与外接球的半径之比为 1∶3,故 =

V1 1 . V2 27

12.已知①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.根据“三段论” 推理出一个结论.则这个结论是________.(填序号) 答案 ① 解析 根据演绎推理的特点,正方形与矩形是特殊与一般的关系,所以结论是正方形的对角 线相等. 13.如图(1)若从点 O 所作的两条射线 OM、ON 上分别有点 M1、M2 与点 N1、N2,则三角形面积 之比

S?OM1N1 S?OM 2 N2



OM1 ON1 · .如图(2),若从点 O 所作的不在同一平面内的三条射线 OP、OQ 和 OR OM2 ON2

上分别有点 P1、P2,点 Q1、Q2 和点 R1、R2,则类似的结论为__________________.

13

答案

VO ? PQ 1 1R1 VO ? P2Q2 R2

?

OP 1 OQ1 OR1 ? ? OP2 OQ2 OR2

解析 考查类比推理问题,由图看出三棱锥 P1-OR1Q1 及三棱锥 P2-OR2Q2 的底面面积之比为

OQ1 OR1 OP1 · ,又过顶点分别向底面作垂线,得到高的比为 ,故体积之比为 OQ2 OR2 OP2

VO ? PQ 1 1R1 VO ? P2Q2 R2

?

OP 1 OQ1 OR1 ? ? . OP2 OQ2 OR2

14.已知等差数列{an}的公差 d=2,首项 a1=5. (1)求数列{an}的前 n 项和 Sn; (2)设 Tn=n(2an-5),求 S1,S2,S3,S4,S5;T1,T2,T3,T4,T5,并归纳出 Sn 与 Tn 的大小规 律. 解 (1)由于 a1=5,d=2, 所以 Sn=5n+

n?n-1?
2

×2=n(n+4).
2

(2)因为 Tn=n(2an-5)=n[2(2n+3)-5]=4n +n, 所以 T1=5,T2=4×2 +2=18,T3=4×3 +3=39,
2 2

T4=4×42+4=68,T5=4×52+5=105. S1=5,S2=2×(2+4)=12,S3=3×(3+4)=21, S4=4×(4+4)=32,S5=5×(5+4)=45.
由此可知 S1=T1,当 n≥2 且 n∈N 时,Sn<Tn. 归纳猜想:当 n=1 时,Sn=Tn; 当 n≥2,n∈N 时,Sn<Tn. 15.已知函数 f(x)=-
* *

a
x

a+ a

(a>0,且 a≠1).

1 1 (1)证明:函数 y=f(x)的图象关于点( ,- )对称; 2 2 (2)求 f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值. 1 1 (1)证明 函数 f(x)的定义域为全体实数,任取一点(x,y),它关于点( ,- )对称的点的 2 2 坐标为(1-x,-1-y).由已知 y=-

a
x

a+ a



14

则-1-y=-1+

a

ax+ a

=-

ax

ax+ a



a a a·ax f(1-x)=- 1-x =- =- a a + a a+ a·ax x+ a a
=-

ax

ax+ a



∴-1-y=f(1-x), 1 1 即函数 y=f(x)的图象关于点( ,- )对称. 2 2 (2)解 由(1)知-1-f(x)=f(1-x), 即 f(x)+f(1-x)=-1. ∴f(-2)+f(3)=-1,f(-1)+f(2)=-1,

f(0)+f(1)=-1.
则 f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.

15


赞助商链接

2017版高考数学一轮复习 第十二章 推理与证明、算法初...

2017版高考数学一轮复习 第十二章 推理与证明算法初步、复数 第1合情推理与演绎推理练习 理_数学_高中教育_教育专区。2017 版高考数学一轮复习 第十二章 ...

...大一轮复习第十二章推理与证明算法复数12.1合情推理...

江苏专用2018版高考数学大一轮复习第十二章推理与证明算法复数12.1合情推理与演绎推理教师用书文 - 12.1 合情推理与演绎推理 1.合情推理 (1)归纳推理 ①定义:...

【步步高】2017版高考数学一轮复习 第十三章 推理与证...

【步步高】 (江苏专用)2017 版高考数学一轮复习 第十三章 推理与 证明算法复数 13.2 直接证明与间接证明 理 1.直接证明 (1)综合法 ①定义:从已知条件...

2017版高考数学一轮复习 第十二章 推理与证明、算法初...

2017版高考数学一轮复习 第十二章 推理与证明算法初步、复数阶段回扣练 理_数学_高中教育_教育专区。2017 版高考数学一轮复习 第十二章 推理与证明算法初步、...

2018版高考数学一轮复习第十二章推理证明算法复数第1讲...

2018版高考数学一轮复习第十二章推理证明算法复数第1合情推理与演绎推理理_数学_高中教育_教育专区。第十二章 第1讲一、选择题 推理证明算法复数 合情推理...

...2017版高考数学一轮复习 第十二章 推理与证明、算法...

【步步高】(江苏专用)2017版高考数学一轮复习 第十二章 推理与证明算法复数 12.3 算法与流程图 文_数学_高中教育_教育专区。【步步高】 (江苏专用)2017 版...

...】2017版高考数学一轮复习 第十二章 推理与证明、算...

【高优指导】2017版高考数学一轮复习 第十二章 推理与证明算法初步与复数 53 归纳与类比考点规范练 文_数学_高中教育_教育专区。考点规范练 53 归纳与类比考点...

【步步高】2017版高考数学一轮复习 第十三章 推理与证...

【步步高】2017版高考数学一轮复习 第十三章 推理与证明算法复数 13.1 合情推理与演绎推理 理_数学_高中教育_教育专区。【步步高】 (江苏专用)2017 版高考...

【步步高】(江苏专用)2017版高考数学一轮复习 第十三章...

【步步高】(江苏专用)2017版高考数学一轮复习 第十三章 推理与证明算法复数 13.4 算法与流程图 理_数学_高中教育_教育专区。【步步高】 (江苏专用)2017 版...

2018版高考数学一轮复习第十二章推理证明算法复数12.1...

2018版高考数学一轮复习第十二章推理证明算法复数12.1随机事件的概率理 - 第十二章 推理证明算法复数 12.1 随机事件的概率 理 1.概率频率 (1)在相同的...